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Nov Dec Jan

■ Use Case Infectious 
Diseases

■ Unsupervised ML

■ Lecture Kickoff

■ Actors in Healthcare

■ Digital Health Data

Final Exam
Feb 13, 2024

11:00am,
Lecture Hall HS1

■ Machine Learning (ML) 
Foundations

■ Use Case Oncology

■ Biology Recap

ML

Feb

Q & A

■ Natural Language 
Processing

■ Use Case Nephrology 
& Intensive Care

■ Supervised ML & 
Deep Learning

ML



■ Similarity Measures

■ Clustering Algorithms

□ K-Means Clustering

□ Gaussian Mixtures

□ DBSCAN

□ Agglomerative Hierarchical Clustering

■ Evaluation of Clustering Results
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Classification

Categorical output

e.g. x ∈ Fruits, y ∈ {“apple”, “orange”}

f(         )= “apple”

f(         )= “orange”

 Regression

Continuous output

e.g.: x ∈ Fruits, y ∈ ℝ+ ≙ t until ripe) 

f (          ) = 12 days

Structured Prediction

e.g. x ∈ ℝw x h x d, y ∈ ℝw x h ≙ pixels

f(                  ) = 

Supervised Learning 
(Labels available for training)

Unsupervised Learning 
(No labels during training)

Anomaly / novelty detection

trained only on “normal” samples

e.g. x ∈ Apples, y ∈ { J , L }

 

Reward

Reinforcement Learning

Transfer Learning

“apple”

“orange”

Reuse

“apple”

“pear”

Model A

Model B

Semi-Supervised Learning 
(Some labels for training)

Dimensionality reduction

x ∈ ℝd, x’ ∈ ℝp, p < d

e.g., projecting all features of a fruit 
to 2 dimensions for visualization 

 

J L

Clustering

e.g. x ∈ Apples, y ∈ 1…k

 
1

3

2

Action

https://en.wikipedia.org/wiki/Apple
https://cdn4.vectorstock.com/i/1000x1000/16/58/ro

bot-arm-line-icon-sign-on-vector-17841658.jpg
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Classification
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e.g. x ∈ Fruits, y ∈ {“apple”, “orange”}
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f(         )= “orange”

 Regression

Continuous output
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f (          ) = 12 days
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e.g. x ∈ ℝw x h x d, y ∈ ℝw x h ≙ pixels
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Supervised Learning 
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Transfer Learning

“apple”

“orange”

Reuse

“apple”

“pear”
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Model B

Dimensionality reduction

x ∈ ℝd, x’ ∈ ℝp, p < d

e.g., projecting all features of a fruit 
to 2 dimensions for visualization 

 

Clustering

e.g. x ∈ Apples, y ∈ 1…k

 
1

3

2

https://en.wikipedia.org/wiki/Apple
https://cdn4.vectorstock.com/i/1000x1000/16/58/ro

bot-arm-line-icon-sign-on-vector-17841658.jpg

Unsupervised Learning 
(No labels during training)
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Supervised Learning 
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Clustering

e.g. x ∈ Apples, y ∈ 1…k

 
1

3

2

https://en.wikipedia.org/wiki/Apple
https://cdn4.vectorstock.com/i/1000x1000/16/58/ro

bot-arm-line-icon-sign-on-vector-17841658.jpg
Dimensionality reduction

x ∈ ℝd, x’ ∈ ℝp, p < d

e.g., projecting all features of a fruit 
to 2 dimensions for visualization 

 

Unsupervised Learning 
(No labels during training)



Supervised Learning

Data Management for 
Digital Health, Winter 
2023

Unsupervised 
Learning

9Training set:   𝑥 $ , 𝑦 $ , 𝑥 % , 𝑦 % , 𝑥 & , 𝑦 & , … , 𝑥 ' , 𝑦 '

x x x
x
x

x

y



Supervised Learning

Data Management for 
Digital Health, Winter 
2023

Unsupervised 
Learning

10

x x x
x
x

x

y

Training set:   𝑥 $ , 𝑦 $ , 𝑥 % , 𝑦 % , 𝑥 & , 𝑦 & , … , 𝑥 ' , 𝑦 '



Unsupervised Learning

Data Management for 
Digital Health, Winter 
2023

Unsupervised 
Learning

11Training set:   𝑥 $ , 𝑥 % , 𝑥 & , … , 𝑥 '

x

y



Training set:   𝑥 $ , 𝑥 % , 𝑥 & , … , 𝑥 '

Unsupervised Learning

Data Management for 
Digital Health, Winter 
2023

Unsupervised 
Learning

12

x

y
Clustering algorithm



Clusters of Patients
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Li, Li, et al. "Identification of type 2 diabetes
subgroups through topological analysis of
patient similarity." Science translational 
medicine 7.311 (2015): 311ra174-311ra174.
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https://www.sbert.net/examples/applications/clustering/README.html



Clusters of Pixels
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Clusters of Genes
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Jiang, K., Karasawa, R., Hu, Z. et al. Plasma exosomes from
children with juvenile dermatomyositis are taken up by
human aortic endothelial cells and are associated with
altered gene expression in those cells. Pediatr
Rheumatol 17, 41 (2019). https://doi.org/10.1186/s12969-
019-0347-0



■ Identifies sub-groups without explicit labels

■ „Good“ clustering:

□ Similar data belong to the same cluster

□ Dissimilar data belong to different clusters

■ How do we measure similarity?

Clustering
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■ Distance measures D(X,Y) quantify similarity or dissimilarity between two data points X,Y

■ Mathematical function determining how 'far apart' two entities are in the feature space

■ Key properties:

□ Non-negativity 𝐷 𝑋, 𝑌 > 0 𝑖𝑓 𝑋 ≠ 𝑌

□ Identity of Indiscernibles 𝐷 𝑋, 𝑌 = 0 𝑖𝑓𝑓 𝑋 = 𝑌

□ Symmetry 𝐷 𝑋, 𝑌 = 𝐷 𝑌, 𝑋

□ Triangle Inequality 𝐷 𝑋, 𝑍 ≤ 𝐷 𝑋, 𝑌 + 𝐷 𝑌, 𝑍

■ Similarity: 1 – D(X,Y)

Similarity and Distance Measures
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Euclidean Distance
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d = 𝑥! −𝑥" ! + 𝑦! −𝑦" !



■ Generalized formula for distance in n dimensions

■ P=2 Euclidian distance

■ P=1 Manhattan distance

■ P= ♾ Chebyshev distance

Minkowski Distance
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■ 𝐷 𝑋, 𝑌 = ∑!"#$ 𝑥! − 𝑦! %
!
"

■ 𝐷 𝑋, 𝑌 = ∑!"#$ 𝑥! − 𝑦! &
!
#

■ 𝐷 𝑋, 𝑌 = ∑!"#$ 𝑥! − 𝑦! # #

■ 𝐷 𝑋, 𝑌 = 	 lim
$→(

∑!"#$ 𝑥! − 𝑦! %
!
" = max( 𝑥! − 𝑦! )



■ Suppose following two vectors represent three attributes of two data points:

□ X = (1, 0, 2)

□ Y= (0, 1, 0)

■ Euclidian distance (P = 2)

1 − 0 % + 0 − 1 % + 2 − 0 % = 1 + 1 + 4 = 6

■ Manhattan distance (P = 1) 

1 − 0 + 0 − 1 + 2 − 0 = 1 + −1 + 2 = 4

■ Chebyshev distance (P= ♾ )

max(1,1,2)	=	2

Minkowski Distance
Example
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■ Jaccard Coefficient (∩*
(∪*

■ Cosine Similarity:
(,*
( *

■ For strings: 

□ Hamming distance (same length strings)

□ Edit distance

Other Similarity / Distance Measures
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Clustering Algorithms
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■ Partitioning:

□ k-Means

□ Expectation–Maximization (EM) using Gaussian 
Mixture Models (GMM)

□ Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN)

■ Hierarchical:

□ Agglomerative Hierarchical Clustering

https://scikit-learn.org/stable/modules/clustering.html



k-Means Clustering
Idea
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1. Initialize: Choose k examples (data points) from 
the dataset as initial centroids (randomly)

2. Cluster assignment: Data points that are the 
closest (similar) to a centroid will create a cluster

3. Move the centroid: A centroid’s new value is going 
to be the mean of all the examples in a cluster

4. Repeating: Keep repeating step 2 and 3 until the 
centroids stop moving, in other words, k-Means 
algorithm is converged



k-Means Clustering
Step 0
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■ k = 2, Euclidean distance

■ A and C are randomly selected as the initial means

x y

A 1 1

B 1 0

C 0 2

D 2 4

E 3 5

c1

c2

A

B

C

D E

0

1

2

3

4

5

0 1 2 3

y

x



k-Means Clustering
Step 1.1
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x y

A 1 1

B 1 0

C 0 2

D 2 4

E 3 5

■ Compute distances between each of the cluster means and all other points

■ Assign nearest centroid to each point

c1

c2

1 2

A 0 1.4

B 1 2.2

C 1.4 0

D 3.2 2.8

E 4.5 4.2

Distance 
to cluster

A

B

C

D E

0

1

2

3

4

5

0 1 2 3

y

x



k-Means Clustering
Step 1.1
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x y

A 1 1

B 1 0

C 0 2

D 2 4

E 3 5

■ Assign each case to the cluster having the closest mean

■ Recalculate the cluster means

c1

c2

1 2 Cluster

A 0 1.4 1

B 1 2.2 1

C 1.4 0 2

D 3.2 2.8 2

E 4.5 4.2 2

Distance 
to cluster

A

B

C

D E

0

1

2

3

4

5

0 1 2 3

y

x



k-Means Clustering
Step 1.1
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x y

A 1 1

B 1 0

C 0 2

D 2 4

E 3 5

■ Assign each case to the cluster having the closest mean

■ Recalculate the cluster means

c1

c2

1 2 Cluster

A 0 1.4 1

B 1 2.2 1

C 1.4 0 2

D 3.2 2.8 2

E 4.5 4.2 2

Distance 
to cluster

c1

c2

A

B

C

D E

0

1

2

3

4

5

0 1 2 3

y

x

c1 = (1.0, 0.5)

c2 = (1.7, 3.7)

means



k-Means Clustering
Step 1.1 Plot
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x y

A 1 1

B 1 0

C 0 2

D 2 4

E 3 5

■ Assign each case to the cluster having the closest mean

■ Recalculate the cluster means

c1

c2

1 2 Cluster

A 0 1.4 1

B 1 2.2 1

C 1.4 0 2

D 3.2 2.8 2

E 4.5 4.2 2

Distance 
to cluster

c1
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A

B

C

D E

0

1

2

3

4

5

0 1 2 3

y

x

c1 = (1.0, 0.5)

c2 = (1.7, 3.7)



k-Means Clustering
Step 2.1
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x y

A 1 1

B 1 0

C 0 2

D 2 4

E 3 5

■ Compute distances between each of the cluster and all other points

c1

c2

1 2

A 0.5 2.7

B 0.5 3.7

C 1.8 2.4

D 3.6 0.5

E 4.9 1.9

Distance 
to cluster

c1

c2

A

B

C

D E

0

1

2

3

4

5

0 1 2 3

y

x

c1 = (1.0, 0.5)

c2 = (1.7, 3.7)



k-Means Clustering
Step 2.1
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x y

A 1 1
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C 0 2

D 2 4

E 3 5

■ Compute distances between each of the cluster and all other points

c1

c2

1 2

A 0.5 2.7

B 0.5 3.7

C 1.8 2.4

D 3.6 0.5

E 4.9 1.9

Distance 
to cluster

c1

c2

A

B

C

D E

0

1
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3

4
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0 1 2 3

y
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k-Means Clustering
Step 2.1
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x y

A 1 1

B 1 0

C 0 2

D 2 4

E 3 5

■ Compute distances between each of the cluster and all other points

1 2 Cluster

A 0.5 2.7 1

B 0.5 3.7 1

C 1.8 2.4 1

D 3.6 0.5 2

E 4.9 1.9 2

Distance 
to cluster

c1

c2

A

B

C

D E

0

1

2

3

4

5

0 1 2 3

y

x

c1 = (0.7, 1.0)

c2 = (2.5, 4.5)

means

c1

c2



k-Means Clustering
Step 2.1 Plot
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■ Assign each case to the cluster having the closest mean

■ Recalculate the cluster means

1 2 Cluster
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k-Means Clustering
Step 3
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x y

A 1 1

B 1 0

C 0 2

D 2 4

E 3 5

■ Algorithm has converged – re-calculating distances, 
reassigning cases to clusters results in no change

■ This is the final solution

1 2 Cluster

A 0.5 2.7 1

B 0.5 3.7 1

C 1.8 2.4 1

D 3.6 0.5 2

E 4.9 1.9 2

Distance 
to cluster

c1
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A

B

C

D E

0

1

2

3

4

5

0 1 2 3

y

x

c1 = (0.7, 1.0)

c2 = (2.5, 4.5)

c1

c2



k-Means Clustering Algorithm
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■ Inputs: K, set of points  x1, …, xn

■ Place centroids c1, …, cK at random locations

■ Repeat until convergence:

□ For each point xi:

– Find nearest centroid cj 𝑎𝑟𝑔min
-
𝐷 𝑥. , 𝑐-

– Assign the point xi to cluster j

□ For each cluster j = 1, …, K: 𝑐- 𝑎 = $
'#
∑/$→1# 𝑥. 𝑎 𝑓𝑜𝑟 𝑎 = 1. . 𝑑

– New centroid cj = mean of all points xi assigned to cluster j in previous step

■ Stop when none of the cluster assignments change

■ Variants: k-medians, k-medoids

Distance (e.g. Euclidian between 
instance xi and cluster cj)



What should k be?
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■ k-means clustering algorithm requires the number of 
clusters k set

■ What is the magic number k?

■ One heuristic is called Elbow Curve

□ Train k-Means models for different numbers of k 

□ y axis := sum of the square distance between points in a 
cluster and its centroid

□ Stop when returns are diminishing (overfitting)

□ … not very accurate and often subjective

https://www.edureka.co/blog/k-means-clustering-
algorithm/



■ „Soft“ variant of k-Means

■ Uses a mixture of k Gaussian distributions

■ Each cluster is defined by mean and 
covariance

■ Instead of fixed cluster assignment, each 
data point has some likelihood of
belonging to each cluster

■ Iterative estimation of Gaussian
parameters similar to k-Means

Gaussian Mixture Models (GMMs)
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1. Initialization: Select the number of clusters and randomly initialize the Gaussian
distribution parameters (mean, variance) for each one of them

2. E-step: Calculate probability of each data point belonging to a particular cluster
(The closer the point is to the Gaussian’s center, the better are the chances of it
belonging to the cluster)

3. M-step: Update parameters of the Gaussian distributions (means, covariances, and
mixture weights) to maximize the likelihood of the observed data

4. Convergence: Repeat the steps 2 and 3 until convergence

Expectation-Maximization (EM) for GMMs
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■ GMMs supports cluster shapes that are not spherical

■ Number of clusters still needs to be chosen a priori

■ Training is rather slow, but means can be initialized from k-Means

Gaussian Mixture Models
Considerations
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■ Concepts

□ Core Points

□ Border Points

□ Noise Points

■ Two parameters

□ minPts := Minimum number of point needed in a cluster

□ epsilon := Radius to assign a point to cluster using distance function

Density-Based Spatial Clustering of Applications with Noise
(DBSCAN)
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for each unvisited point P in the dataset:
mark P as visited
N := neighbors of P within epsilon distance.
if size of N < minPts:

mark P as noise
else:

create a new cluster with P as a core point
for each neighbor P’ in N:

if P’ previously marked as noise:
include P’ in cluster as border point

if P’ has been visited:
continue

include P’ in current cluster as core point
N’ := neighbors of P’ within epsilon distance
if size of N’ > minPts:

expand N by N’

DBSCAN
Pseudocode
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Schubert, Erich, et al. "DBSCAN revisited, revisited: why
and how you should (still) use DBSCAN." ACM 
Transactions on Database Systems (TODS) 42.3 (2017): 
1-21.



■ Explicit handling of noise

■ Arbitrary cluster shapes

■ Quite popular, efficient implementations available

■ Sensitive to choice of parameters, especially epsilon

DBSCAN
Considerations
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■ Builds a hierarchy of clusters

■ Agglomerative (bottom-up)

■ Divisive (top-down)

■ Results can be presented as a 
dendrogram

Hierarchical Clustering
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G

https://www.statisticshowto.com/hierarchical-clustering/



■ Each object is a member of a hierarchy of clusters

■ At the bottom of the hierarchy each object is a single cluster

■ At the top of the hierarchy all objects belong to single clusters

■ Clusters can be linked using different strategies, e.g.:

□ Single Linkage: Minimimizes distance between closest 
observation

□ Maximum or complete linkage: Minimizes the maximum 
distance between observations 

□ Average linkage: Minimizes the average of the distance 
between all observation

Agglomerative Hierarchical Clustering
Overview
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https://www.saedsayad.com/clust
ering_hierarchical.htm



Agglomerative Hierarchical Clustering
Idea
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1. Convert object features to distance matrix

2. Set each object as a cluster (thus if there are 5 objects, there 
will be 5 clusters in the beginning)

3. Iterate until number of clusters is 1

a. Merge two closest clusters

b. Update distance matrix

https://people.revoledu.com/kardi/tutorial/
Clustering/Hierarchical%20Clustering%20Al
gorithm.htm



Agglomerative Hierarchical Clustering
Fill Distance Matrix
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Agglomerative Hierarchical Clustering
Fill Distance Matrix
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Agglomerative Hierarchical Clustering
Fill Distance Matrix
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■ Join the two closest points into a cluster
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■ Join the two closest points into a cluster
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■ Join last two clusters
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■ Evaluation based on shape of clusters themselves

■ e.g., Silhouette Coefficient:

□ for each object i in cluster A:

– 𝑠(𝑖) = 2 . 3 4(.)
789(4 . , 2 . )

(silhouette of object i), where

– a(i) = average dissimilarity of i to all other objects of A

– d(i,	C)	= average dissimilarity of i to all objects of C

– b(i)	=	minA ≠	C d(i,	C)	(second best cluster for object i)

□ Silhouette coefficient for a particular clustering is the mean
silhouette for all samples

■ Other options: Davies–Bouldin index, Dunn Index, …
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■ Evaluation of the ability of clustering 
algorithms to separate class compared to 
ground truth

■ Contingency Matrix

□ Similar to confusion matrix

□ How often do assignment to cluster and 
actual class occur together?
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Cluster 1 Cluster 2

Label 1 0 100

Label 2 100 0

Label 3 0 100

Cluster 1 Cluster 2 Cluster 3

Label 1 100 0 0

Label 2 0 100 0

Label 3 4 0 96



■ Rand Index: Measures the agreement of all pairs of samples (similar to accuracy for
classification)

𝑅 =
𝑇𝑃 + 𝑇𝑁

'
%

□ TP is the number of pairs of points that are clustered together in the predicted and 
the ground truth partitioning

□ TN is the number of pairs of points that are assigned to different clusters in the
predicted and the ground truth partitioning

□ '
% is the number of pairs in a datasize of size n (TP + TN + FP + FN)

■ Adjusted Rand index accounts for agreement by chance

■ Others: mutual information, purity, …

Extrinsic Evaluation
Rand Index

Data Management for 
Digital Health, Winter 
2023

Unsupervised 
Learning

72



What to Take Home

Data Management for 
Digital Health, Winter 
2023

Unsupervised 
Learning

73

■ Clustering: art or science?

■ Distance and similarity measures

■ Clustering algorithms (k-Means, GMM, DBSCAN, Hierarchical)

■ Intrinsic and extrinsic evaluation of clustering results
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