

Digital Engineering • Universität Potsdam

91011010101010

Data Management for Digital Health Revision of Exercise IV

Borchert, Dr. Schapranow Data Management for Digital Health Winter 2023

Exercise IV Topics

- Unsupervised Learning
- Digital Nephrology (Guest Lecture)
- Infectious Diseases
- Data Management for Epidemiology
- Medical Image Analysis

Evaluation Exercise IV

Exercise IV Key Stats

Q5 What can you say about the results of applying k-Means clustering to dataset 1 [Jupyter Notebook]?

 The silhouette coefficient has its maximum for k=3, while the second highest value is attained for k=2.

- The Rand index has its maximum for k=3, while the second highest value is attained for k=2.
- In the elbow plot, the sum of squared distances decreases until k=3 and increases again for larger values of k.
- The contingency matrix for k=2 indicates perfect classification accuracy.

Evaluation Exercise IV

k-Means (Dataset 1) Elbow Curve

k-Means (Dataset 1) Silhouette Coefficient

k-Means (Dataset 1) Rand Index

1.0

0.8

Rand index 0.4

0.2

0.0

Evaluation of the ability of clustering algorithms to separate class compared to ground truth

- Contingency Matrix
 - Similar to confusion matrix
 - How often do assignment to cluster and actual class occur together?

Extrinsic Evaluation

k=2

	Cluster 1	Cluster 2
Label 1	0	100
Label 2	100	0
Label 3	0	100

	Cluster 1	Cluster 2	Cluster 3
Label 1	100	0	0
Label 2	0	100	0
Label 3	4	0	96

Unsupervised Learning

Q6 What can you say about dataset 3? [Jupyter Notebook]

 The Gaussian Mixture model fails to find a meaningful clustering of the data.

- DBSCAN with epsilon = 0.4 and a minimum number of samples of 20 identifies 3 clusters.
- DBSCAN with epsilon = 0.4 and a minimum number of samples of 20 results in a Rand score of > 0.95, indicating a good fit of the data with respect to the ground truth.

 The Rand index score of DBSCAN increases linearly with larger values of epsilon.

Evaluation Exercise IV

Q6 What can you say about dataset 3? [Jupyter Notebook]

Evaluation Exercise IV

Q9 Which statements are valid for kidney transplantations in the context of the Eurotransplant Senior Program (ESP)?

 ESP is designed to address the transplantation requirements of a special group of recipients, i.e., age 65 and older.

- The ESP prioritizes short transport time of the donor organ over immunological matching of recipient and donor.
- Older transplanted patients have better survival rates compared to younger patients.
- More than 90% of patients undergoing kidney transplantation in Germany are older than 65 years.

Evaluation Exercise IV

	European Senior Programme
Age Recipient	≥ 65
Age donor	≥ 65
HLA	No Matching
Cold ischemia	As short as possible
Option "Urgency"	Yes
Waiting time	Yes
	Started 1999

Medical Use Case Nephrology

Q16 Please select all appropriate statements about the reproduction number R as discussed in class.

- The effective reproduction number describes the average number of new infections caused by a single case at a given point in time.
- The basic reproduction number is hard to measure, therefore it is typically estimated.
- The effective reproduction number is hard to measure, therefore it is typically estimated.
- The basic reproduction number describes the total number of cases during a disease outbreak.

Evaluation Exercise IV

- Basic reproduction R₀ (typically estimated) := Expected number of new cases caused by a single case at t₀ when all individuals were in compartment S
- Effective reproduction R_t (observed) := Avg. number of new cases caused by a single case at time point t (this is what you find in situational reports)
- Linking R_t and R₀: Let s be the proportion of people in compartment S, who can get infected (e.g. no immunity): R_t = R₀ * s
- Herd immunity := Indirect protection against infectious diseases once a specific percentage p_{immune} of the population has become immune so that $R_t < 1$.

 $\square R_t < 1 \Leftrightarrow R_0 * s < 1$ $\square R_0 * (1-p_{immune}) < 1$ $\square p_{immune} > 1-R_0^{-1}$

Data Management for Epidemiology