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0Abstract

Abstract polymer models are combinatorial structures that consist of a set of

weighted objects, called polymers, together with a re�exive and symmetric

incompatibility relation that describes which polymers cannot occur together.

In this thesis we present the �rst Markov chain approach for sampling from

the Gibbs distribution of abstract polymer models. Known Markov chains for

polymer models from vertex and edge spin systems can be seen as special cases

of this polymer Markov chain. We introduce the concept of polymer cliques

and propose a generalized polymer mixing condition as a way to guarantee

rapid mixing of our chain. The form of this condition is similar to conditions

from cluster expansion approaches, such as the Kotecký-Preiss condition and

the Fernández-Procacci condition, but it is less restrictive.

To obtain an e�cient sampling scheme for the Gibbs distribution from our

polymer Markov chain, we prove that it su�ces to draw each step of the chain

approximately according to its transition probabilities. As one way to approxi-

mate each transition of the chain, we suggest to truncate each polymer clique

based on some notion of size. We introduce the clique truncation condition

as a general tool to determine the maximum size of polymers that we have to

consider for the steps of the chain.

We prove that our sampling scheme can be used to construct an FPRAS for

the partition function. By this, we obtain the �rst Markov chain Monte Carlo

method that works for abstract polymer models in a similar regime as cluster

expansion approaches and beyond, while avoiding their complicated analytical

assumptions and arguments.

Further, we illustrate how our approach can be applied to algorithmic problems

like the hard-core model on bipartiteα-expander graphs and the perfect matching

polynomial to obtain new trade-o�s between runtime and weight bounds. We

emphasize that similar results can be obtained for a variety of other applications.
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0Zusammenfassung

Abstrakte Polymermodelle sind kombinatorische Strukturen, bestehend aus einer

Menge gewichteter Objekte, genannt Polymere, und einer symmetrischen und

re�exiven Relation, die bestimmte Polymerkombinationen verbietet.

In dieser Arbeit präsentieren wir das erste Markov-Ketten-Verfahren, um von

der Gibbs-Verteilung abstrakten Polymermodelle zu ziehen. Bekannte Markov-

Ketten, etwa für Knoten- und Kanten-Spin-Systeme, können als Spezialfälle

dieser Polymer-Markov-Kette betrachtet werden. Wir stellen das Konzept der

Polymer-Clique und eine verallgemeinerte Polymer-Mischungs-Bedingung vor.

Letztere spielt eine entscheidende Rolle für die Mischungszeit der Markov-Kette.

Die verallgemeinerte Polymer-Mischungs-Bedingung hat eine ähnliche Form

wie Kriterien für die Konvergenz der Cluster-Expansion, etwa die Kotecký-Preiss-

oder die Fernández-Procacci-Bedingung, ist jedoch weniger restriktiv als diese.

Zur algorithmischen Verwendung unserer Polymer-Markov-Kette beweisen

wir, dass es genügt jeden Schritt der Kette näherungsweise entsprechen ihrer

Übergangsverteilung zu vollziehen. Eine Möglichkeit die Übergänge zu approxi-

mieren, ist die Polymer-Cliquen auf kleine Polymere einzuschränken. Nützliches

Werkzeug zur Bestimmung der maximalen benötigten Polymergröße ist hierbei

die Cliquen-Einschränkungs-Bedingung.

Wir beweisen weiterhin, dass unsere Verfahren dazu benutzt werden können

einen FPRAS für die Zustandssumme abstrakter Polymermodelle zu erhalten.

Das Resultat ist das erste Markov-Ketten-Monte-Carlo-Verfahren, dass ähnliche

Bereiche wie Cluster-Expansion abdeckt und sogar über diese hinausgeht. Hier-

für benötigen wir weder komplizierten analytischen Annahmen, noch derartige

analytische Argumente.

Schließlich wenden wir unseren Ansatz auf den Hard-core-Prozess auf bipar-

titen α-Expander-Graphen und einem Polynom auf perfekten Matchings an. Wir

erhalten neue Trade-o�s zwischen Laufzeit und erlaubten Polymergewichten.

Ähnliche Resultate können für ein breites Feld von Anwendungen erzielt werden.
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1 Introduction

In recent years, abstract polymer models gained growing attention in the area

of counting complexity. Informally, an abstract polymer model is de�ned by a

set of weighted objects, called polymers, and an incompatibility relation that

describes which objects cannot occur together. Based on these ingredients,

two computational tasks are commonly considered. One is to sample from

the Gibbs distribution, which is drawing sets of pairwise compatible polymers

proportionally to the product of their weights. The second task is to compute

the so called partition function, which can be thought of as calculating the

normalization constant of the Gibbs distribution.

Abstract polymer models were initially used in statistical physics, in order

to investigate phase transitions in particle systems (see for example Borgs and

Imbrie [BI89] and Laanait et al. [Laa+91]). However, more and more relations

between these models and standard problems from theoretical computer science

have been discovered. On the one hand, the computational tasks related to

polymer models have some obvious similarities to a weighted version of sampling

and counting independent sets. On the other hand, many other computational

problems can be expressed using such polymer models, as shown by Casel et

al. [Cas+19], Cannon and Perkins [CP19], and Jenssen et al. [JKP18]. For many of

these applications, the number of polymers is not polynomially bounded in the

input size of the original problem, imposing additional algorithmic challenges.

Most algorithms for approximating the partition function of abstract polymer

models can be divided into two categories. The �rst category of algorithms uses

an in�nite series, called cluster expansion, which is a formal power series repre-

sentation of the logarithm of the partition function. Under certain conditions,

only a small number of terms of this series is needed for a su�ciently good

approximation. Based on an approximation of the partition function, the Gibbs

measure can usually be reconstructed. However, such approaches often su�er

from requiring complicated analytical assumptions and having high runtime.

The second type of algorithms uses Markov chains to sample from the Gibbs

distribution in the �rst place. Based on these sampling schemes, randomized

1



Chapter 1 Introduction

approximations of the partition functions can be derived. Although these algo-

rithms usually have better runtimes, such Markov chains are only known for

certain types of polymer models and they often lead to much worse bounds on

the weights of the polymers than cluster expansion algorithms.

Before having a detailed look at recent results from both algorithmic �elds, it

will be helpful to formalize our notion of polymer models.

Abstract polymer models

Throughout this thesis, we use the following formal de�nition of a polymer

model.

I De�nition 1.1 (Polymer model). A polymer model is a tuple (C,w, �)

where C is a �nite set of objects called polymers, w = {wγ ∈ R>0 | γ ∈ C} is a

set of positive weights and �⊆ C × C is a re�exive and symmetric relation. We

call � the incompatibility relation. In addition, we say γ ,γ ′ ∈ C are incompatible

if γ � γ ′ and compatible otherwise. J

The algorithmic tasks that are connected to polymer models are based on so

called polymer families.

I De�nition 1.2 (Polymer families). For a polymer model (C,w, �) we call

a subset of polymers Γ ⊆ C a polymer family if all γ ,γ ′ ∈ Γ with γ , γ ′ are

compatible. Moreover, we denote the set of all polymer families by FC,� , or

write F if the polymer model is clear from the context. J

We would like to mention a helpful interpretation of polymer models and

polymer families. If we consider (C,w, �) as a graph with vertices C and edges

de�ned by the incompatibility relation �, then every polymer family Γ ∈ FC,�
corresponds to an independent set. We will sometimes refer to this graph

interpretation as polymer graph.

We continue by formalizing the partition function and the Gibbs distribution,

which were already informally introduced before. We start with the partition

function of the polymer model.

I De�nition 1.3 (Partition function). Given a polymer model (C,w, �) with

polymer families FC,� , we de�ne the partition function of the polymer model as

Z (C,w, �) =
∑

Γ ∈FC,�

∏
γ ∈Γ

wγ ,

2



Introduction Chapter 1

where the empty polymer family ∅ ∈ FC,� contributes 1. If the polymer model

is obvious, we might simply write Z for the value of the partition function. J

Based on this, the Gibbs distribution can be de�ned as follows.

I De�nition 1.4 (Gibbs distribution). Given a polymer model (C,w, �) with

polymer families FC,� , we de�ne the Gibbs measure or Gibbs distribution as a

probability distribution µC,w,� on FC,� with

µC,w,�(Γ ) =

∏
γ ∈Γ wγ

Z (C,w, �)

for every Γ ∈ FC,� . Again, we assign µC,w,�(∅) =
1

Z (C,w,�) , and we might simply

write µ if the polymer model becomes clear from the context. J

Using the polymer graph interpretation, computing the partition function

and sampling from the Gibbs distribution can be seen as counting and sampling

independent sets of the polymer graph, proportionally to the product of the

weights of their vertices.

We would like to discuss some details about these de�nitions. First of all, we

consider only �nite polymer models. We are aware of the fact that there are some

areas, for example in statistical physics, where also properties of in�nite polymer

models are of interest. However, most computational tasks can be modeled by

using only �nite polymer sets (see for example [Cas+19; CP19; JKP18]).

Secondly, we restrict the weights to be positive real values. There are other

algorithmic approaches for approximating the partition function for complex-

valued weights. However, we will mainly focus on the computational task of

sampling from the Gibbs distribution. Thus, it makes sense to assume non-

negative real values as weights, such that the Gibbs distribution is always well

de�ned. The fact that we even assume them to be strictly positive does not add

any additional restrictions, as polymers γ ∈ C with wγ = 0 neither contribute to

the Gibbs distribution, nor to the partition function.

Cluster expansion algorithms

An interesting property of polymer models is that the logarithm of their par-

tition function can be represented by an in�nite formal power series, called

cluster expansion, as for example observed by Koteckỳ and Preiss [KP86] and

3



Chapter 1 Introduction

Dobrushin [Dob96]. More precisely, if the cluster expansion is absolute conver-

gent, than it is equal to the log partition function up to rearrangement of terms.

Since this is known, many su�cient conditions for absolute convergence of this

cluster expansion have been proposed. A comprehensive study was for example

written by Fernández and Procacci [FP07].

Besides purely theoretical interests, absolute convergence of the Taylor se-

ries of the log partition function is especially important from the algorithmic

perspective. Similar properties have been used in approximation algorithms for

related problems, for example by Barvinok [Bar14] and Patel and Regts [PR17].

Using the connection between approximation and absolute convergence, Hel-

muth et al. [HPR18] were the �rst who proposed an approximation algorithm

for the partition function of polymer models that arise from vertex spin sys-

tems on �nite graphs with constant degree bound (see Section 6.3 for a formal

de�nition). Their idea was to model the weights of the polymers as functions

of some complex parameter z and to relate analytical properties of the weight

function with a certain notion of size of a polymer. If the partition function is a

polynomial in z without any root in an open disc of radius δ > 0 around zero,

then the cluster expansion converges absolutely in this region and only a small

number of its terms is needed to approximate the log partition function. This

leads to an e�cient approximation on bounded degree graphs for every z such

that
δ

δ−|z | ∈ Θ(1) (see Theorem 3.4 of Casel et al. [Cas+19] for this bound on |z |).

Similar algorithms have later been proposed for cases where the partition func-

tion cannot be expressed as a polynomial of some parameter z. They were applied

to extend known approximation bounds for interesting problems, like the hard-

core model on bipartite α-expander graphs and the Potts model on α-expander

graphs by Jenssen et al. [JKP18], and the hard-core model on unbalanced bipartite

graphs by Cannon and Perkins [CP19]. However, those algorithms still rely on

convergence analysis of the cluster expansion and need very speci�c versions of

know convergence criteria. Usually these criteria are very restricted versions

of the so called Kotecký-Preiss condition as for example stated in Theorem 8

of Jenssen et al. [JKP18]. Moreover, for vertex spin systems on graphs with

n vertices, a bounded degree ∆ and q + 1 possible spin assignments for each

vertex, such algorithms often require a runtime of (nε )
O(ln(∆q))

for computing an

ε-approximation of the partition function.

The approach of Helmuth et al. [HPR18] was originally limited to polymer

models for vertex spin systems, but it was later generalized for abstract polymer
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Introduction Chapter 1

models by Casel et al. [Cas+19]. They applied this generalization for example to

edges spin systems to approximate certain Holant polynomials, like the perfect

matching polynomial. However, to the best of our knowledge, no generalization

for abstract polymer models was stated for cases where the partition function

cannot be expressed as a polynomial of a single parameter z.

Markov chain algorithms

Besides the deterministic approaches for approximation of the partition function,

recently some Markov chain Monte Carlo algorithms have been proposed as

well. The idea of these approaches is to approximately sample from the Gibbs

distribution and use this sampling schema to construct a randomized approxi-

mation algorithm. Naturally, such algorithms are limited to real-valued weights,

as they need the Gibbs distribution to be well de�ned. However, at the same

time they circumvent any analytical assumptions about the partition function or

convergence analysis of the cluster expansion.

One of the most remarkable results in this area was by Chen et al. [Che+19],

who proposed a Markov chain to sample from the Gibbs distribution of vertex

spin polymer models and proved the polymer mixing condition as a su�cient

condition for rapid mixing of this chain. They were able to use this to construct

a randomized approximation for the partition function of a polymer model with

runtime O

(
(nε )

2
log(nε )

2
)
, but for the price of much worse bounds on the weights

than cluster expansion approaches need.

Whereas this Markov chain approach initially was introduced for vertex

spin systems, a version for edge spin systems has been proposed by Casel et

al. [Cas+19]. Similar to the vertex spin version, it signi�cantly improves the

runtime but only works for smaller positive real weights than the deterministic

algorithms.

Contributions and outline

In this thesis, we propose a Markov chain Monte-Carlo framework for sampling

from the Gibbs distribution and approximating the partition function of abstract

polymer models.

We start in Chapter 2 with specifying necessary de�nitions and clarifying our

notation. This will include certain properties of Markov chains as well as notions

5



Chapter 1 Introduction

of e�cient approximation and asymptotic runtime that are used throughout this

thesis.

In Chapter 3 we will present a Markov chain for sampling from the Gibbs

distribution of abstract polymer models. In order to do so, we will introduce the

notion of polymer cliques and polymer clique covers. Known Markov chains

as proposed by Chen et al. [Che+19] for vertex spin systems and by Casel et

al. [Cas+19] for edge spin systems can be seen as special cases of our polymer

Markov chain.

In addition, we propose the generalized polymer mixing condition (see De�ni-

tion 3.3) which has a similar form as known conditions for absolute convergence

of the cluster expansion (see for example Fernández and Procacci [FP07]) but is

less restrictive than those conditions. We will show that under mild assumptions

the generalized polymer mixing condition is su�cient to guarantee rapid mixing

of our polymer Markov chain. At the end of this chapter, we will discuss in

Theorem 3.13 under which conditions our chain can be used to obtain an e�cient

sampling scheme for the Gibbs distribution.

The main weakness of our proposed polymer Markov chain is that it is not

obvious how each transition can be done e�ciently. A solution for this problem

will be investigated in Chapter 4. Namely, we will present conditions under

which each step of a Markov chain can be done according to an approximation

of the desired transition probability distribution without losing the ability to use

it for approximate sampling. We use a technique that might also be applicable

to other sampling problems, as it is not limited to polymer models. This will

result in Theorem 4.5, which under suitable conditions reduces approximate

sampling from the Gibbs distribution to approximate sampling from a so called

clique polymer distribution to obtain approximated transitions.

In Chapter 5 we will examine one way of doing this approximate sampling of

transitions, namely truncating each polymer clique by some size-function. We

will introduce the clique truncation condition (see De�nition 5.5) as a tool to

determine up to which size polymers have to be considered to get a su�ciently

good approximation of each transition. Although this idea is similar to truncation

in cluster expansion algorithms, there is a signi�cant di�erence. We circumvent

assumptions about analytical properties of the polymer model and do truncation

solely on the basis of individual polymer cliques instead of involving any in�nite

power series. By this, our condition will be more �exible and the idea behind it

will be easier to understand. Theorem 5.7 shows how the generalized polymer
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mixing condition and the clique truncation condition can be combined to get

an e�cient approximate sampling scheme that works with only little structural

assumptions about the polymer model.

We would like to suggest the following point of view on these to conditions:

whereas the generalized polymer mixing condition ensures that we can handle

the combinatorial complexity that arises from drawing pairwise compatible

subsets of polymers, the clique truncation condition takes care of the complexity

that arises from the sheer number of polymers that we have to deal with. We

noticed that Galanis et al. [GGS19] already proposed a similar combination of

truncation and Glauber dynamics. However, their approach was limited to a

speci�c algorithmic problem, whereas we cover a much broader setting.

Chapter 6 will start with introducing an FPRAS for the partition function

in Theorem 6.2. Our algorithm will work for any of our proposed sampling

methods by applying self-reducibility based on polymer cliques. Thus, we can

apply it even with an exponential number of polymers.

We will proceed with comparing the conditions for our approach with con-

ditions for algorithms that use cluster expansion. First, we prove that under

minor assumptions all conditions for cluster expansion that were discussed by

Fernández and Procacci [FP07] can be used to obtain rapid mixing of the polymer

Markov chain. Further, we will show that under mild conditions, certain conver-

gence criteria directly imply both, the generalized polymer mixing condition and

the clique truncation condition, meaning that we can obtain an e�cient sam-

pling scheme for the Gibbs distribution and an FPRAS for the partition function.

Especially, this also holds for abstract polymer models with partition functions

that cannot be expressed as polynomials of a single parameter z.

We state our conditions for an FPRAS of the partition function of edge and ver-

tex spin systems in a convenient to use form in Theorem 6.15 and Theorem 6.26.

As a main result, we can obtain a randomized approximation for the partition

function in time

(n
ε

)
O(ln(∆q))

for a variety of vertex spin polymer models if for

every polymer γ ∈ C it holds that∑
γ ′�γ

ea |γ
′ |
wγ ′ ≤ ea |γ |,

where a ∈ R>0 and |γ | is the number of vertices in a polymer. This condition

for an FPRAS applies to polymer models like those used for the Potts model on

α-expander graphs and the hard-core model on bipartite α-expander graphs by
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Jenssen et al. [JKP18] as well as the hard-core model on unbalanced bipartite

graphs by Cannon and Perkins [CP19]. Our result is a improvement over the

size-dependent versions of the Kotecký-Preiss condition that were originally

used.

Further, in Theorem 6.16 and Theorem 6.27 we state conditions for a random-

ized approximation of the partition function of vertex and edge spin polymer

models in time

(n
ε

)c
for some absolute constant c independent of q and ∆.

We illustrate the application of our approach on the hard-core model on

α-expander graphs and the perfect matching polynomial. Although we only

slightly improve known bounds on the weights while having the same (nε )
O(ln(∆))

runtime as known algorithms, we will show that our approach is capable of

improving the runtime dependency on ∆ with only a minor decrease of the

polymer weights.

Finally, in Chapter 7 we discuss our results, as well as possible directions for

future work and implications for other lines of research.

8



2 Preliminaries

In this chapter, we would like to clarify some de�nitions and notation that we

will use throughout this thesis, especially with respect to Markov chains and

asymptotic runtime behaviour.

Markov chains

We assume the reader to be familiar with the de�nition of a Markov chain, as

well as with basic properties like aperiodicity, irreducibility and recurrence. For

a detailed reading, we would like to refer to standard literature, like [Bré13].

We will denote a Markov chain as a sequence of random variables (Xt )t ∈N
on some state space Ω. A homogeneous Markov chain is mainly characterized

by its transitions P : Ω × Ω → [0, 1] with P(x ,y) = Pr[Xi+1 = y | Xi = x ].
We generalize this notation to the t-step transitions P t : Ω × Ω → [0, 1] by

P t (x ,y) = Pr[Xi+t = y | Xi = x ]. For some properties like irreducibility, we

might use the Markov chain (Xt )t ∈N and its transitions P interchangeably (e.g.

say P is irreducible) as far as such properties are characterized solely by its

transitions. In addition, for any t ∈ N we write P t (x , ·) for the probability

distribution of Xi+t given that Xi = x , and we might simplify this to P(x , ·) for

t = 1.

Some of the algorithmically most interesting properties of a Markov chain are

its stationary distributions and its convergence to such a distribution.

I De�nition 2.1 (Stationary distribution). For a Markov chain (Xt )t ∈N on

a state space Ω with transitions P , a stationary distribution is a probability

distribution πP on Ω such that for all y ∈ Ω

πP (y) =
∑
x ∈Ω

πP (x)P(x ,y). J

It is well known that for an irreducible Markov chain such a distribution

exists if and only if the Markov chain is positive recurrent, and that in this case

9



Chapter 2 Preliminaries

the stationary distribution is unique and positive everywhere. A useful way to

identify stationary distributions is the detailed balance condition.

I De�nition 2.2 (Detailed balance). Given a Markov chain on a state space

Ω with transitions P . A distribution κ on Ω is said to ful�ll detailed balance if

for every x ,y ∈ Ω

κ(x)P(x ,y) = κ(y)P(y,x). J

Note that if κ ful�lls detailed balance with respect to P , it holds for all y ∈ Ω
that ∑

x ∈Ω

κ(x)P(x ,y) =
∑
x ∈Ω

κ(y)P(y,x) = κ(y)
∑
x ∈Ω

P(y,x) = κ(y).

Thus, such a distribution κ is also a stationary distribution for P .

Next, we want to characterize the convergence of a Markov chain to its

stationary distribution. To have a notion of convergence, we need some metric

for probability distributions on a state space. It is common to use the total

variation distance as such a metric. There are many equivalent ways to de�ne

total variation distance, but for this thesis the following de�nition will su�ce.

I De�nition 2.3 (Total variation distance). For two probability distributions

κ1,κ2 on a countable state space Ω, the total variation distance is de�ned as

dTV(κ1,κ2) =
1

2

∑
x ∈Ω

|κ1(x) − κ2(x)|. J

As a matter of fact, if an irreducible, positive recurrent Markov chain with

transitions P and stationary distribution πP on a state space Ω is aperiodic, then

for every x ∈ Ω we have that limt→∞ dTV(P
t (x , ·),πP ) = 0. In this case, we say

P t (x , ·) converges to πP as t → ∞. A simple way to see that an irreducible

Markov chain is aperiodic is if the chain has at least one state with positive

self-loop probability (i.e., there is a state x ∈ Ω such that P(x ,x) > 0).

We can now use the total variation distance to de�ne the mixing time of a

Markov chain as a formal way to describe the speed of this convergence.

I De�nition 2.4 (Mixing time). Let (Xt )t ∈N be an irreducible, positive recur-

rent, aperiodic Markov chain on a state space Ω with transitions P . In addition,

10



Preliminaries Chapter 2

let πP be the unique stationary distribution of this Markov chain. We de�ne the

mixing time for any ε ∈ (0, 1] as

tP (ε) = max

x ∈Ω
{min{t ∈ N>0 | ∀t

′ ≥ t : dTV(P
t ′(x , ·),πP ) ≤ ε}}. J

Informally, the mixing time bounds for any starting state x ∈ Ω the necessary

number of steps to get ε-close to its stationary distribution in terms of total

variation distance.

Finally, we would like to give one more de�nition, which is not necessarily

only used for analysing Markov chains, but which turned out to be very helpful,

and which we will also need frequently for our proofs. Namely, this is the

de�nition of a coupling of random variables.

I De�nition 2.5 (Coupling). Let X and Y be random variables on countable

state spaces ΩX and ΩY , respectively. A coupling between X and Y is a new

random variable Z on ΩX × ΩY , distributed such that for any SX ⊆ ΩX and

SY ⊆ ΩY

Pr[Z ∈ SX ×ΩY ] = Pr[X ∈ SX ] and Pr[Z ∈ ΩX × SY ] = Pr[Y ∈ SY ]. J

Informally, this means a coupling is a joint distribution of X and Y , such that

each of its marginals behaves according to its original distribution.

Asymptotic runtime, approximations and complexity

We would like to clarify some important points regarding our notation of runtime

and our notion of e�cient (randomized) approximation. For asymptotic bounds

on runtime, we will mainly use the well known Landau notation. Moreover,

we write poly(n) for the class of functions with polynomial upper bound in n.

Thus, writing f (n) ∈ poly(n) means there exists a function h, polynomial in n,

such that f (n) ∈ O(h(n)). With slight abuse of notation, we might also write

f (n) ≤ poly(n) for saying that f has a polynomial upper bound and f (n) ≥
poly(f (n)) if f has a polynomial lower bound in n (i.e., there is a polynomial

function h such that f (n) ∈ Ω(h(n))). In addition, we will also use this notation

in exponential functions. Thus, for example f (n) ≤ epoly(n) means that there is

a function h(n) ∈ poly(n) such that f (n) ∈ O
(
eh(n)

)
, and f (n) ≥ e−poly(n) means

that there is a function h(n) ∈ poly(n) such that f (n) ∈ Ω(e−h(n)).

11



Chapter 2 Preliminaries

For the rest of the thesis, we might use phrases like e�cient (randomized)
approximation, depending on some input size n. We say that there is an ef-

�cient approximation algorithm if there is an FPTAS (fully polynomial time

approximation scheme).

I De�nition 2.6 (FPTAS). Given a set of instances S and a function f : S →
R>0. We say there is an FPTAS for f if for every ε > 0 there is an algorithm A
such that for every instance s ∈ S encoded with input size n it holds that

(1 − ε)f (s) ≤ A(s) ≤ (1 + ε)f (s)

and A has runtime in poly

(n
ε

)
. J

Similarly, we say that there is an e�cient randomized approximation algorithm

if there is an FPRAS (fully polynomial randomized approximation scheme).

I De�nition 2.7 (FPRAS). Given a set of instances S and a function f : S →
R>0. We say there is an FPRAS for f if for every ε > 0 there is a randomized

algorithm A such that for every instance s ∈ S encoded with input size n it holds

that

Pr[(1 − ε)f (s) ≤ A(s) ≤ (1 + ε)f (s)] ≥
3

4

and A has runtime in poly

(n
ε

)
. J

It is quite common to use the probability
3

4
for the de�nition of an FPRAS.

However, note that its choice is rather arbitrary. More precisely, as long as the

success probability is strictly larger than
1

2
, any success probability 1 − δ can

be archived by taking the median of log( 1δ ) independent runs (see for example

Lemma 6.1 of Jerrum et al. [JVV86]).

Finally, it will be useful to have some understanding of complexity classes for

decision problems and their randomized extensions, like P, NP, RP and BPP. As

discussions about proven and conjectured relations between these classes are

outside the scope of this theses, we would like to refer to standard literature like

[Pap03].
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3 Polymer Dynamics

In this chapter, we will propose a Markov chain to sample from the Gibbs

distribution of abstract polymer models, assuming only little knowledge about

the structure of the polymer graph. Namely, this knowledge will be captured

by so called polymer cliques. The main idea of our chain will be to �rst sample

a polymer clique uniformly at random, and then sample a polymer from that

clique with respect to a certain clique polymer distribution.

I De�nition 3.1 (Polymer clique). For a set of polymers C and an incompat-

ibility relation �, we de�ne a subset Λ ⊆ C as polymer clique, if γ � γ ′ for all

γ ,γ ′ ∈ Λ. J

For readers who are familiar with cluster expansion approaches for approx-

imating partition functions, we would like to point out that this is di�erent

from the de�nition of a polymer cluster. Commonly, the de�nition of a polymer

cluster does not assume pairwise incompatibility, but only connectedness in the

polymer graph, which is crucial for the inclusion-exclusion principal of cluster

expansion.

Based on polymer cliques, we can now de�ne a polymer clique cover as follows.

I De�nition 3.2 (Polymer clique cover). For a set of polymers C and an

incompatibility relation �, a polymer clique cover of size m is a collection of

polymer cliques Λ1, ...,Λm , such that

⋃
1≤i≤m Λi = C. J

Note that this de�nition does not demand the polymer cliques Λ1, ...,Λm to

be disjoint, in order to form a polymer clique cover. The only requirement is

that every polymer is in at least one polymer clique.

For using such a cover to construct a Markov chain, the following condition

will play a key role.

13



Chapter 3 Polymer Dynamics

I De�nition 3.3 (Generalized polymer mixing condition). We say a poly-

mer model (C,w, �) ful�lls the generalized polymer mixing condition if there is

a function f : C → R>0 such that for all polymers γ ∈ C it holds that∑
γ ′�γ

f (γ ′)wγ ′ ≤ f (γ ). J

In the following, we will use a given polymer clique cover for a polymer model

(C,w, �) which ful�lls the generalized polymer mixing condition to construct a

Markov chain that converges to the Gibbs measure µ. In addition, we will bound

the mixing time of this chain using the size of the polymer clique coverm and

the function f from the generalized polymer mixing condition.

3.1 Polymer Markov chain

Given a polymer model (C,w, �) we will now construct a Markov chain (Xt )t ∈N
on the set of polymer families F . To state this chain, we will need the notion of

a clique polymer distribution, de�ned as follows.

I De�nition 3.4 (Clique polymer distribution). Let (C,w, �) be a polymer

model that ful�lls the generalized polymer mixing condition and let Λ1, ..., Λm
be a polymer clique cover. For each polymer clique Λi , we de�ne the clique

polymer distribution νi on Λi ∪ {∅} as

νi (γ ) = wγ for all γ ∈ Λi

νi (∅) = 1 −
∑
γ ∈Λi

wγ . J

Obviously, we should argue that this is a valid probability distribution.

I Lemma 3.5. Given a polymer model (C,w, �) ful�lling the generalized poly-

mer mixing condition for f as in De�nition 3.3. For all polymer clique covers

Λ1, ..., Λm and every clique Λi the clique polymer distribution νi , de�ned as in

De�nition 3.4, is a probability distribution on Λi ∪ {∅}. J

Proof of Lemma 3.5. By de�nition, we know that νi (γ ) = wγ ≥ 0. It remains to

show that

∑
γ ∈Λi wγ ≤ 1. By the de�nition of a polymer clique, we know that all

14



Polymer Markov chain Section 3.1

polymers in Λi are pairwise incompatible. Thus, for every γ ∈ Λi we have∑
γ ′∈Λi

f (γ ′)wγ ′ ≤
∑
γ ′�γ

f (γ ′)wγ ′ .

In addition, the generalized polymer mixing condition gives us∑
γ ′�γ

f (γ ′)wγ ′ ≤ f (γ ).

Now let γmin ∈ Λi be such that for all γ ′ ∈ Λi it holds that f (γmin) ≤ f (γ ′). Such

a γmin does always exist, as our polymer cliques are subsets of a �nite set of

polymers. We obtain that ∑
γ ′∈Λi

f (γ ′)wγ ′ ≤ f (γmin).

As f is strictly positive, we can divide by f (γmin) and get∑
γ ′∈Λi

wγ ′ ≤
∑
γ ′∈Λi

f (γ ′)

f (γmin)
wγ ′ ≤ 1,

which concludes our proof. �

With this given, we can construct the desired Markov chain. The chain starts

at some stateX0 ∈ F (e.g. X0 = ∅). Given we haveXt = Γ at time t , we construct

Xt+1 as follows.

1. Choose a polymer clique Λi uniformly at random.

2. Uniformly at random, proceed either with a) or with b).

a) If there is γ ∈ Γ ∩ Λi , set Xt+1 = Γ \ {γ }.
Otherwise, set Xt+1 = Xt .

b) Draw γ from νi .
If γ = ∅ or if there is a γ ′ ∈ Γ such that γ � γ ′, set Xt+1 = Xt .

Otherwise, set Xt+1 = Γ ∪ {γ }.

We call this Markov chain the polymer Markov chain and will denote its

transitions by P . Their are some similarities to insert/delete chains, as for example

15



Chapter 3 Polymer Dynamics

used for sampling independent set (see Dyer and Greenhill [DG00]). However,

the main di�erence is that this chain does not choose single polymers (i.e.,

vertices of the polymer graph) uniformly at random. Instead, it makes use of an

underlying clique cover and the fact that at any time at most one polymer from

each clique can be in the current polymer family. This for example guarantees

that in a) the polymer γ ∈ Γ ∩ Λi , if it exists, is uniquely de�ned.

First of all, we have to prove that this Markov chain converges to the desired

stationary distribution µ.

I Lemma 3.6 (Convergence to µ). Given the polymer Markov chain with

transitions P , de�ned as above. For any Γ ∈ F the distribution P t (Γ , ·) converges

to the unique stationary distribution µ as t →∞. J

Before we start to prove this lemma, let us characterize the transitions P of

the polymer Markov chain. For this, the following de�nition will be useful.

I De�nition 3.7. Given a polymer model (C,w, �)with a polymer clique cover

Λ1, ..., Λm . For every polymer γ ∈ C we de�ne mγ to be the number of polymer

cliques Λi in the polymer clique cover such that γ ∈ Λi . J

Let ⊕ denote the symmetric set di�erence. Note that for every pair of polymer

families Γ , Γ ′ ∈ F with |Γ ⊕ Γ ′ | > 1 it holds that P(Γ , Γ ′) = 0, because we add

or remove at most one polymer at a time.

Now, assume |Γ ⊕ Γ ′ | = 1 and without loss of generality let Γ = Γ ′ \ {γ }
for some γ ∈ Γ ′. By the de�nition of the polymer Markov chain, we have that

P(Γ , Γ ′) =
mγ
2m wγ and P(Γ ′, Γ ) =

mγ
2m . Moreover, both transition probabilities are

strictly positive as we have wγ > 0 and by de�nition of a polymer clique cover

mγ > 0.

Finally, we consider the self-loop probability P(Γ , Γ ) for any Γ ∈ F . Assume

that the chain chooses a polymer clique Λi with Γ ∪ Λi = ∅, then there is

probability of
1

2
that we try to remove a polymer from Λi . As such a polymer

does not exist in Γ , this does not change the state of the chain. Otherwise, if we

choose a polymer clique Λi such that Γ ∪ Λi = {γ }, then there is a probability

of
1

2
that we try to add a polymer from Λi , which fails as such a polymer is

incompatible to γ . This results in a self-loop probability of P(Γ , Γ ) ≥ 1

2
. We now

use these observations to prove that the polymer Markov chain converges to the

Gibbs distribution µ.
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Coupling with exponential diameter Section 3.2

Proof of Lemma 3.6. First we prove that the polymer Markov chain converges

to a unique stationary distribution. For this, it is su�cient to argue that the

chain is aperiodic, irreducible and positive recurrent. The chain is aperiodic as

every state has a positive self-loop probability of at least
1

2
. In addition, for every

polymer family Γ ∈ F we can go to the empty family ∅ by removing all γ ∈ Γ
with positive probability in a �nite number of steps. Similarly, we can go from

the empty polymer family to any other Γ ′ ∈ F by adding every γ ∈ Γ ′ with

positive probability. This proves irreducibility. Finally, the state space is �nite

and irreducible, and thus every state is positive recurrent.

It remains to show that µ is the stationary distribution of the polymer Markov

chain. For this, we prove that µ ful�lls detailed balance with respect to P , which

implies the desired result. This means, it su�ces to show that for every Γ , Γ ′ ∈ F ,

µ(Γ )P(Γ , Γ ′) = µ(Γ ′)P(Γ ′, Γ ).

For Γ = Γ ′, this is trivially true. The same holds for |Γ ⊕ Γ ′ | > 1, as in this

case P(Γ , Γ ′) = P(Γ ′, Γ ) = 0. Let us assume Γ = Γ ′ \ {γ } for some γ ∈ Γ ′. By

de�nition of µ and P , we have that

µ(Γ )P(Γ , Γ ′) =

∏
γ ′∈Γ wγ ′

Z

mγ

2m
wγ =

∏
γ ′∈Γ ′ wγ ′

Z

mγ

2m
= µ(Γ ′)P(Γ ′, Γ ).

This concludes our proof. �

We now know that our polymer Markov chain converges to the desired

stationary distribution. However, for using it algorithmically, its mixing time

is of special interest. In order to bound the mixing time of this chain, we will

apply a coupling argument, which will be stated more precisely in the following

section.

3.2 Coupling with exponential diameter

In this section, we will investigate a useful lemma for bounding the mixing time

of a Markov chain. The method will be very similar to a well know coupling

method, stated for example in Theorem 2.1 of Dyer and Greenhill [DG98]. The

main idea is to de�ne for a Markov chain with state space Ω some non-negative

integer-valued function δ : Ω2 → N such that δ (x ,y) = 0 if and only if x = y.

17



Chapter 3 Polymer Dynamics

If it is possible to construct a coupling of the transitions of two versions of the

Markov chain such that δ is in expectation strictly decreasing by a constant

factor for all pairs of states x ,y ∈ Ω, then the mixing time can be upper bounded

logarithmically in
1

ε and the diameter D = maxx,y∈Ω δ (x ,y). However, if it is

only possible to show that δ is non-increasing in expectation, we still can bound

the mixing time polynomially in the diameter and logarithmically in
1

ε , as long

as for all pairs of states x ,y ∈ Ω with x , y there is at least a constant probability

that δ is changing with each step of the chain.

This tends to be a useful method for bounding the mixing time, as long as

the diameter is polynomial in the size of our input and if δ only takes integer

values. However, for our polymer chain, we will apply a function δ that depends

on the function f , used in the generalized polymer mixing condition. In order

not to restrict f to integer-valued functions with an upper bound polynomial

in the input size, we need a version of this coupling argument that can also

handle exponential and real-valued functions δ . Such a version was proposed

by Greenberg et al. [GPR] in Theorem 3.3. We decide to restate and prove a

di�erent version of their argument. This has two reasons. First of all, their

theorem assumes that δ takes no values in the interval (0, 1), which we might

want to relax to an arbitrary interval (0,d) for some d > 0. In addition, their

theorem is incorrectly stated.

I Lemma 3.8 (Coupling with exponential diameter). Given an irreducible,

positive recurrent, aperiodic Markov chain on a state space Ω with transitions

P , such that for all x ∈ Ω it holds that P(x ,x) > 0. For some d > 0, let

δ : Ω2 → {0}∪R≥d be a function, taking only �nitely many values in {0}∪[d,D]
and let δ (x ,y) = 0 if and only if x = y. Assume their is a coupling between the

transitions of two copies of the chain (Xt )t ∈N, (Yt )t ∈N, such that for every pair

of states x ,y ∈ Ω it holds that

E[δ (Xt+1,Yt+1) | Xt = x ,Yt = y ] ≤ δ (x ,y).

If there are κ,η ∈ (0, 1) such that for the same coupling and all x ,y ∈ Ω with

x , y it holds that

Pr[|δ (Xt+1,Yt+1) − δ (x ,y)| ≥ ηδ (x ,y) | Xt = x ,Yt = y ] ≥ κ,
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then the mixing time can be bounded by

tP (ε) ≤

⌈
3e ln(D/d)2

ln(1 + η)2κ
ln

(
1

ε

)⌉
. J

Besides the fact that we added the lower boundd to the function δ and included

its e�ect on the mixing time bound, the main di�erence to Greenberg et al. [GPR]

is that they use some adjacency structure U ⊆ Ω2
and state that, assuming δ

is a metric, it is su�cient that E[δ (Xt+1,Yt+1) | Xt = x ,Yt = y ] ≤ δ (x ,y) and

Pr[|δ (Xt+1,Yt+1) − δ (x ,y)| ≥ ηδ (x ,y) | Xt = x ,Yt = y ] hold for adjacent pairs of

states (x ,y) ∈ U . However, this is false, and a simple counterexample can be

constructed by considering the mixing time of a random walk on a cycle with

self-loops.

To circumvent this, we decide to state Lemma 3.8 using a coupling for all pairs

of states and assuming that all necessary properties hold for all pairs of states in

the �rst place. As a side e�ect of this, δ is not restricted to be a metric anymore.

These di�erences aside, most of the proof is similar to Greenberg et al. [GPR].

However, we decide to reprove our version of this coupling lemma to have a

consistent version, which we can refer to.

For proving Lemma 3.8, it will be useful to have the de�nition of a coupling

time.

I De�nition 3.9 (Coupling time). Let (Xt )t ∈N, (Yt )t ∈N be two copies of a

Markov chain on a state space Ω. For initial states x ,y ∈ Ω we de�ne the

coupling time with respect to x ,y as the following random variable

Txy = inf{t ∈ N | Xt = Yt given that X0 = x ,Y0 = y}.

The coupling time of the Markov chain is de�ned asTP = maxx,y∈Ω E

[
Txy

]
. J

In the proof of Lemma 3.8 we will focus on bounding the coupling time and

apply the following lemma.

I Lemma3.10 (Aldous [Ald83], 3.13). Given an irreducible, positive-recurrent,

aperiodic Markov chain with transitions P and coupling timeTP on a state space

Ω. For any coupling, the mixing time can be upper bounded by

tP (ε) ≤

⌈
eTP ln

(
1

ε

)⌉
. J
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In order to bound the coupling time, we will apply the following lemma about

the �rst hitting time of a stochastic process, which was also used by Greenberg

et al. [GPR].

I Lemma 3.11 (Greenberg et al. [GRS17], Lemma 3.5). Given a bounded

stochastic process (St )t ∈N with d ≤ St ≤ D for some d,D ∈ R and all t ≥ 0.

In addition, let q be some stopping value and T = inf{t ∈ N | St = q}. If

E[St+1 | St = s ] ≤ s and E

[
(St+1 − s)

2

�� St = s ] ≥ Q for all t ≤ T , then it holds

that

E[T ] ≤
D2 + q2 − 2Dq

Q
. J

With this, we can �nally start the proof.

Proof of Lemma 3.8. First of all, we de�ne δ ′(x ,y) =
δ (x,y)

d . Note that δ ′ now

takes �nitely many values in {0} ∪ [1,D/d]. It holds that

Xt = Yt ⇔ δ (Xt ,Yt ) = 0⇔ δ ′(Xt ,Yt ) = 0.

In addition, by linearity of expectation and the conditions of the lemma it holds

for every x ,y ∈ Ω that

E[δ ′(Xt+1,Yt+1) | Xt = x ,Yt = y ]

=
1

d
E[δ (Xt+1,Yt+1) | Xt = x ,Yt = y ]

≤
1

d
δ (x ,y)

= δ ′(x ,y)

and also that

Pr[|δ ′(Xt+1,Yt+1) − δ
′(x ,y)| ≥ ηδ ′(x ,y) | Xt = x ,Yt = y ]

= Pr

[
1

d
|δ (Xt+1,Yt+1) − δ (x ,y)| ≥ η

1

d
δ (x ,y)

���� Xt = x ,Yt = y

]
= Pr[|δ (Xt+1,Yt+1) − δ (x ,y)| ≥ ηδ (x ,y) | Xt = x ,Yt = y ]

≥ κ .
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Thus, these properties of δ also hold for δ ′. From this point, the proof is

mainly the same as by Greenberg et al. [GPR], except that it holds for all pairs

of states in the �rst place.

We de�ne a random process (φ
xy
t )t ∈N withφ

xy
t = δ

′(Xt ,Yt ) givenX0 = x ,Y0 =
y. As we cannot assume this process to exhibit any stochastic drift, we need to

transform it to some other process. This transformation is done by the function

l̃n : [0,D/d] → R with

l̃n(x) =

{
−2 ln(2) if x ∈ [0, 1)

ln(x) if x ∈ [1,D/d]
.

Based on that, we de�ne a new stochastic processψ
xy
t = l̃n(φ

xy
t ). Now, we have

ψ
xy
t = −2 ln(2) ⇔ φ

xy
t = 0⇔ Xt = Yt for X0 = x ,Y0 = y.

Thus, if we can upper bound the maximum expected t ∈ N such that ψ
xy
t =

−2 ln(2) for all x ,y ∈ Ω, this will give us a bound on the coupling time TP as in

De�nition 3.9, which results in a bound on the mixing time by using Lemma 3.10.

To get such a bound, we will apply a stopping time argument from Lemma 3.11.

For this, we need to show that E

[
ψ
xy
t+1

��ψ xy
t = s

]
≤ s and we need a lower bound

on E

[
(ψ

xy
t+1 − s)

2

��ψ xy
t = s

]
for all s ≥ 0.

Note that ψ
xy
t = s ≥ 0 implies that φ

xy
t ≥ 1. As l̃n is a concave function on

the entire interval [0,D/d], we can use Jensen’s inequality for expected values

to get

E

[
ψ
xy
t+1

��ψ xy
t = s

]
= E

[
l̃n(φ

xy
t+1)

��� l̃n(φxyt ) = s ]
≤ l̃n

(
E

[
φ
xy
t+1

��� l̃n(φxyt ) = s ]])
= l̃n

(
E

[
φ
xy
t+1

�� φxyt = es
] )

≤ l̃n(es )

≤ s .

Next we lower bound E

[
(ψ

xy
t+1 − s)

2

��ψ xy
t = s

]
for s ≥ 0. First, we rewrite

this in terms of conditional expectations. To do so, let A be the event, that the

process jumps fromψ
xy
t = s ≥ 0 directly toψ

xy
t+1 = −2 ln(2) (i.e., from φ

xy
t+1 ≥ 1
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to φ
xy
t+1 = 0). By the law of total expectation, we get

E

[
(ψ

xy
t+1 − s)

2

��ψ xy
t = s

]
=E

[
(ψ

xy
t+1 − s)

2

��ψ xy
t = s,A

]
Pr[A]

+ E
[
(ψ

xy
t+1 − s)

2

���ψ xy
t = s,A

]
(1 − Pr[A]).

Becauseψ
xy
t ≥ 0, we have

E

[
(ψ

xy
t+1 − s)

2

��ψ xy
t = s,A

]
Pr[A] = (−2 ln(2) −ψ

xy
t )

2
Pr[A] ≥ 4 ln(2)2Pr[A].

In addition, we know that the process (ψ
xy
t )t ∈N takes only �nitely many di�erent

values becauseδ ′ does so. This also implies that (ψ
xy
t+1−s)

2
conditioned onψ

xy
t = s

takes only �nitely many di�erent values. Let R be the set of all such values. Now

we can rewrite the second conditional expectation as

E

[
(ψ

xy
t+1 − s)

2

���ψ xy
t = s,A

]
=

∑
r ∈R

rPr
[
(ψ

xy
t+1 − s)

2 = r
���ψ xy

t = s,A
]

≥ ln(1 + η)2Pr
[
(ψ

xy
t+1 − s)

2 ≥ ln(1 + η)2
���ψ xy

t = s,A
]

Next, we want to lower bound this probability. Note that

Pr

[
(ψ

xy
t+1 − s)

2 ≥ ln(1 + η)2
���ψ xy

t = s,A
]
= Pr

[
|ψ

xy
t+1 − s | ≥ ln(1 + η)

���ψ xy
t = s,A

]
.

This can further be decomposed as

Pr

[
|ψ

xy
t+1 − s | ≥ ln(1 + η)

���ψ xy
t = s,A

]
= Pr

[
ψ
xy
t+1 − s ≥ ln(1 + η)

���ψ xy
t = s,A

]
+ Pr

[
ψ
xy
t+1 − s ≤ − ln(1 + η)

���ψ xy
t = s,A

]
.

We rewrite the �rst probability as

Pr

[
ψ
xy
t+1 − s ≥ ln(1 + η)

���ψ xy
t = s,A

]
= Pr

[
ln

(
φ
xy
t+1

es

)
≥ ln(1 + η)

����� φxyt = es ,A

]
= Pr

[
φ
xy
t+1

es
≥ 1 + η

����� φxyt = es ,A

]
= Pr

[
φ
xy
t+1 − e

s ≥ ηes
��� φxyt = es ,A

]
.
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Furthermore, note that − ln(1+x) ≥ ln(1−x) for x ∈ (0, 1). Thus, we can bound

the second probability by

Pr

[
ψ
xy
t+1 − s ≤ − ln(1 + η)

���ψ xy
t = s,A

]
≥ Pr

[
ψ
xy
t+1 − s ≤ ln(1 − η)

���ψ xy
t = s,A

]
= Pr

[
ln

(
φ
xy
t+1

es

)
≤ ln(1 − η)

����� φxyt = es ,A

]
= Pr

[
φ
xy
t+1

es
≤ 1 − η

����� φxyt = es ,A

]
= Pr

[
φ
xy
t+1 − e

s ≤ −ηes
��� φxyt = es ,A

]
.

Altogether, this gives us

Pr

[
(ψ

xy
t+1 − s)

2 ≥ ln(1 + η)2
���ψ xy

t = s,A
]
= Pr

[
|ψ

xy
t+1 − s | ≥ ln(1 + η)

���ψ xy
t = s,A

]
≥ Pr

[
|φ

xy
t+1 − e

s | ≥ ηes
��� φxyt = es ,A

]
.

By assumption, we have a bound on the probability that (φ
xy
t )t ∈N takes steps of

at least size ηs ′ given φ
xy
t = s

′ ≥ 1. We rewrite this by the law of total probability

as

Pr

[
|φ

xy
t+1 − s

′ | ≥ ηs ′
�� φxyt = s ′ ] = Pr

[
|φ

xy
t+1 − s

′ | ≥ ηs ′
�� φxyt = s ′,A ]

Pr[A]

+ Pr
[
|φ

xy
t+1 − s

′ | ≥ ηs ′
��� φxyt = s ′,A ]

(1 − Pr[A]).

Now, remember that A is the event that we go from φ
xy
t ≥ 1 to φ

xy
t+1 = 0. Thus,

we now that for every η ∈ (0, 1)

Pr

[
|φ

xy
t+1 − s

′ | ≥ ηs ′
�� φxyt = s ′,A ]

= 1.

In addition, we know that our chain has a positive self-loop probability. Thus,

we know that starting from φ
xy
t = s

′ ≥ 0 the probability of going to φ
xy
t+1 = 0 is

strictly less than 1. This implies Pr[A] < 1 and 1 − Pr[A] > 0. Knowing this, we
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can write

Pr

[
|φ

xy
t+1 − s

′ | ≥ ηs ′
��� φxyt = s ′,A ]

=
Pr

[
|φ

xy
t+1 − s

′ | ≥ ηs ′
�� φxyt = s ′ ] − Pr[A]

1 − Pr[A]

≥
κ − Pr[A]

1 − Pr[A]
.

By setting s ′ = es , this gives us the bound

E

[
(ψ

xy
t+1 − s)

2

���ψ xy
t = s,A

]
≥ ln(1 + η)2Pr

[
(ψ

xy
t+1 − s)

2 ≥ ln(1 + η)2
���ψ xy

t = s,A
]

≥ ln(1 + η)2
κ − Pr[A]

1 − Pr[A]
.

Finally, by η < 1 we know that ln(1 + η) ≤ ln(2). So, we get

E

[
(ψ

xy
t+1 − s)

2

��ψ xy
t = s

]
≥ 4 ln(2)2Pr[A] + (1 − Pr[A]) ln(1 + η)2

κ − Pr[A]

1 − Pr[A]

= 4 ln(2)2Pr[A] + ln(1 + η)2κ − ln(1 + η)2Pr[A]

≥ 3 ln(2)2Pr[A] + ln(1 + η)2κ

≥ ln(1 + η)2κ .

As we now know that

E

[
ψ
xy
t+1

��ψ xy
t = s

]
≤ s and

E

[
(ψ

xy
t+1 − s)

2

��ψ xy
t = s

]
≥ ln(1 + η)2κ

and as (φ
xy
t )t ∈N is a bounded stochastic process, we can apply Lemma 3.11 to

get for every x ,y ∈ Ω

E

[
Txy

]
≤

2 ln(D/d)2 + 4 ln(2)2 + 4 ln(2) ln(D/d)

ln(1 + η)2κ
≤

3 ln(D/d)2

ln(1 + η)2κ
.

Together with Lemma 3.10, this gives the desired mixing time bound of

tP (ε) ≤

⌈
3e ln(D/d)2

ln(1 + η)2κ
ln

(
1

ε

)⌉
. �
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3.3 Mixing Time of the polymer Markov chain

We are now going to use Lemma 3.8 to bound the mixing time of the polymer

Markov chain.

I Lemma 3.12 (Mixing time of polymer Markov chain). Let (C,w, �) be

a polymer model that ful�lls the generalized polymer mixing condition for a

function f as in De�nition 3.3, and let Λ1, ..., Λm be a given polymer clique cover

of size m as described in De�nition 3.2. The resulting polymer Markov chain

with transition matrix P is mixing in time

tP (ε) ∈ O

(
m2

ln

(
m2

maxγ ∈C f (γ )

minγ ∈C f (γ )

)
2

ln

(
1

ε

))
. J

Proof of Lemma 3.12. We already know that the polymer Markov chain is irre-

ducible, positive-recurrent and aperiodic, and that it has a self-loop probability

of at least
1

2
. For every Γ , Γ ′ ∈ F we de�ne

δ (Γ , Γ ′) =
∑

γ ∈Γ ⊕Γ ′

f (γ )

mγ
.

Obviously, we have δ (Γ , Γ ′) = 0 if and only if Γ = Γ ′ because f (γ ) > 0 for all

γ ∈ C. Now we set

d = min

Γ,Γ ′
δ (Γ , Γ ′) = min

γ ∈C

f (γ )

mγ

D = max

Γ,Γ ′
δ (Γ , Γ ′) = max

Γ,Γ ′

∑
γ ∈Γ ⊕Γ ′

f (γ )

mγ
.

It holds that d > 0, and as there are only �nitely many pairs of polymer families,

δ takes only �nitely many values in {0} ∪ [d,D]. Thus, δ ful�lls all conditions

from Lemma 3.8.

In the next step, we need to construct a coupling of every pair states. Let

(Xt )t ∈N and (Yt )t ∈N be two copies of the polymer Markov chain. We couple

every transition of these chains by letting both chains try to do the same update.

That means both chains choose the same polymer clique Λi and either both try
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to remove a polymer γ ∈ Λi or both try to add the same polymer. This is a valid

coupling, as all marginal transition probabilities are preserved.

As soon as Xt = Yt , they remain equal for all t ′ ≥ t . To apply Lemma 3.8, we

now have to bound E[δ (Xt+1,Yt+1) | Xt = Γ ,Yt = Γ
′ ] for all pairs |Γ ⊕ Γ ′ | ≥ 1.

Let us de�ne M = Γ ⊕ Γ ′. Note that δ decreases by
f (γ )
mγ

whenever we try to

remove a polymer γ ∈ M . This happens at least with probability

mγ
2m for each

such γ . In addition, δ increases if and only if we add a polymer γ ′ to only one

of both chains. If this is the case, we know that there is γ ∈ M such that γ � γ ′

(we will write this as γ ′ � M) because otherwise we either could have added γ ′

to Γ and Γ ′, or to none of both. For each such polymer γ ′ � M , this happens

with probability at most wγ ′
mγ ′

2m , and it increases δ by
f (γ ′)
mγ ′

. From this, we get

the following bound

E[δ (Xt+1,Yt+1) | Xt = Γ ,Yt = Γ
′ ] = δ (Γ , Γ ′)

−
©­«
∑
γ ∈M

f (γ )

mγ

mγ

2m

ª®¬ + ©­«
∑
γ ′�M

f (γ ′)

mγ ′

mγ ′

2m
wγ ′

ª®¬
= δ (Γ , Γ ′) −

1

2m

©­«©­«
∑
γ ∈M

f (γ )
ª®¬ − ©­«

∑
γ ′�M

f (γ ′)wγ ′
ª®¬ª®¬

≤ δ (Γ , Γ ′) −
1

2m

©­«
∑
γ ∈M

©­«f (γ ) −
∑
γ ′�γ

f (γ ′)wγ ′
ª®¬ª®¬.

Now we can use the generalized polymer mixing condition to see that

∑
γ ∈M

©­«f (γ ) −
∑
γ ′�γ

f (γ ′)wγ ′
ª®¬ ≥

∑
γ ∈M

(f (γ ) − f (γ )) = 0.

Thus, we have

E[δ (Xt+1,Yt+1) | Xt = Γ ,Yt = Γ
′ ] ≤ δ (Γ , Γ ′).

This shows that δ is in expectation non-increasing. Next, we need to lower

bound the probability that δ changes at least by some constant fraction. Again,
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we assume Xt = Γ , Yt = Γ
′

with Γ ′ , Γ and set M = Γ ⊕ Γ ′. We know that

|M | ≤ |Γ ∪ Γ ′ | ≤ |Γ | + |Γ ′ | ≤ 2m

as every polymer family contains at mostm polymers. By de�nition, we have

that δ (Γ , Γ ′) =
∑
γ ∈M

f (γ )
mγ

. Thus, there is as least one γmax ∈ M such that

f (γmax)

mγmax

≥
δ (Γ ,Γ ′)

2m . The probability that this polymer is removed in the next step

is at least

mγmax

2m ≥ 1

2m . Thus, for κ = 1

2m and η = 1

2m we have

Pr[|δ (Xt+1,Yt+1) − δ (Xt ,Yt )| ≥ ηδ (Xt ,Yt )] ≥ κ .

It remains to bound d and D. Note that it holds that

d = min

γ ∈C

f (γ )

mγ
≥

minγ ∈C f (γ )

m

D = max

Γ,Γ ′

∑
γ ∈Γ ⊕Γ ′

f (γ )

mγ
≤ 2mmax

γ ∈C
f (γ )

Applying Lemma 3.8 and the fact that ln(1 + 1/2m) ≥ 1

4m results in

tP (ε) ≤
6em

ln(1 + 1/2m)
ln

(
2m2

maxγ ∈C f (γ )

minγ ∈C f (γ )

)
2

ln

(
1

ε

)
∈ O

(
m2

ln

(
m2

maxγ ∈C f (γ )

minγ ∈C f (γ )

)
2

ln

(
1

ε

))
. �

Although such results on the mixing time of single polymer updates (also

called Glauber dynamics) are of separate theoretical interest, we will mainly

focus on algorithmic aspects. Such algorithmic implications will be discussed in

the following section.

3.4 Algorithmic aspects of generalized polymer
mixing condition

We will now use the described polymer Markov chain for our �rst e�cient

sampling scheme for the Gibbs distribution.
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I Theorem 3.13. Let (C,w, �) be a polymer model encoded with input size n
and let Λ1, ..., Λm be a given polymer clique cover.

Given that:

(1) m ∈ poly(n) and we can draw a polymer clique Λi uniformly at random

in time poly(m)

(2) for every polymer clique Λi and every γ ∈ C we can check whether γ ∈ Λi
in time poly(n)

(3) for every γ ,γ ′ we can check whether γ � γ ′ in poly(n)

(4) (C,w, �) ful�lls the generalized polymer mixing condition as stated in

De�nition 3.3, and e−poly(n) ≤ f (γ ) ≤ epoly(n) for every γ ∈ C

(5) we can sample exactly from each clique polymer distribution νi in time

poly(n)

Then we can ε-approximately sample from the Gibbs distribution µ in time

poly

(n
ε

)
. J

Proof of Theorem 3.13. Because the polymer model ful�lls the generalized poly-

mer mixing condition, we can construct the polymer Markov chain with tran-

sitions P using the given polymer clique cover. Because of Lemma 3.6 and

Lemma 3.12 we know that this chain has the Gibbs distribution µ as its station-

ary distribution and mixing time

tP (ε) ∈ O

(
m2

ln

(
m2

maxγ ∈C f (γ )

minγ ∈C f (γ )

)
2

ln

(
1

ε

))
.

By assumption (1) we know thatm ∈ poly(n) and by assumption (4) we know

that

maxγ ∈C f (γ )
minγ ∈C f (γ )

∈ epoly(n). Thus we have we have tP (ε) ∈ poly

(n
ε

)
. It remains

to argue that each step of the polymer Markov chain can be computed in time

poly

(n
ε

)
.

According to (1) we can draw a polymer clique uniformly at random in time

poly(m), which is also in poly(n).

Now, assume our current polymer family is Γ ∈ F . If we want to know

whether there is a polymer γ ∈ Γ ∩ Λi , we can simply go over all γ ∈ Γ and
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check whether γ ∈ Λi . There can be at most m ∈ poly(n) polymers in every

family Γ and according to (2) we can check each of them in time poly(n).
In addition, according to (5) we can sample a polymer γ from any νi in time

poly(n). If we now want to check if we can add γ to Γ , we iterate over all γ ′ ∈ Γ
and check if γ � γ ′. Again, there are at mostm ∈ poly(n) polymers γ ′ ∈ Γ , and

because of (3), we can check each of them in time poly(n). This results in an

algorithm with the desired run time bounds. �

For the rest of this section, we will have a closer look at the assumptions

of Theorem 3.13. On the one hand, we need e�cient access to some polymer

clique cover Λ1, ..., Λm of polynomial sizem such that we can e�ciently sample a

polymer clique Λi uniformly at random. On the other hand, we need an e�cient

way to sample from each clique polymer distribution νi . Note that the number of

polymers can be bounded by |C| ≤ mmax1≤i≤m{|Λi |}. Thus, if the number of

polymers is exponential in n, at leastm or max1≤i≤m{|Λi |} has to be exponential

in n as well. This leaves two ways for getting an e�cient algorithm with our

Markov chain.

The �rst one is to choose our polymer cliques small, such that we can sample

from each νi e�ciently. However, this implies that m is exponential in n. As our

mixing time bound is polynomial inm and we need to draw a polymer clique Λi
uniformly at random in each step, it might be necessary to show that we can

ignore all but polynomial many polymer cliques, without diverging too much

from our desired Gibbs distribution µ.

The second way for getting an e�cient approximate sampling algorithm

would be to use a polymer clique cover of polynomial size in the �rst place.

However, this not only leads to the question how to obtain such a polymer clique

cover, but it also implies that there might be polymer cliques of exponential size,

making it harder to sample from each clique polymer distribution νi .
For the rest of this thesis, we will investigate the second algorithmic idea. The

reason is that many applications of polymer models give us a polymer clique

cover of polynomial size in a very natural way. Examples for this will be shown

in the applications in Chapter 6. Thus, from now on the main question remains

how to sample e�ciently from each clique polymer distribution νi . In the next

chapter, we will relax this condition, by showing that it is su�cient to sample

approximately from each clique polymer distribution.
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4 Markov Chains with
Transition Error

In this chapter we will give some general tools for bounding the divergence of a

Markov chain from its stationary distribution after introducing small errors in

its transition probabilities. We will apply this to our polymer Markov chain.

More precisely, instead of sampling from the clique polymer distribution νi for

a polymer clique Λi , we approximate this distribution by another distribution

ξi . This results in di�erent transitions, say Q . Our goal is now to �nd a bound

dTV(ξi ,νi ) ≤ εin, such that we can still use Q in order to approximately sample

from the Gibbs measure µ.

4.1 Sample from Markov chains with transition
errors

In this section, we will state a general lemma about sampling from a Markov

chain with bounded transition error. For this, we will use the following formal

notion of transition error.

I De�nition 4.1 (Bounded transition error). Given two Markov chains with

transitions P and Q on a state space Ω. We say that the transition error between

P and Q is bounded by εtr ∈ [0, 1] if dTV(P(x , ·),Q(x , ·)) ≤ εtr for all x ∈ Ω. J

In other words, by saying that the transition error of P and Q is bounded by

εtr, we mean that we can bound the error of the one-step transition distributions

from any state x ∈ Ω. The following lemma shows how such a bound on the

one-step transitions can be used to show that after a certain number of steps t
the t-step distribution Qt (x , ·) is close the stationary distribution of P .

I Lemma 4.2 (Bound on sampling error). Given two Markov chains (Xt )t ∈N
and (Yt )t ∈N with transitions P andQ , respectively, on a state spaceΩ. In addition,

let P converge to a unique stationary distribution πP with mixing time tP (ε). For

some ε ∈ (0, 1] let t ≥ tP
( ε
2

)
. If the one-step transition error between P and Q is

bounded by
ε
2t , then it holds that dTV(Q

t (x , ·),πP ) ≤ ε for every x ∈ Ω. J
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The proof of this lemma is mainly based on using a coupling. More precisely,

we will use the so called coupling inequality and the existence of an optimal

coupling, as stated in the following lemma.

I Lemma 4.3 (Hollander [Hol12], Theorem 2.4 and 2.12). Let X and Y be

random variables on a countable state space Ω with distribution κX and κY ,

respectively. For any coupling of X and Y it holds that

dTV(κX ,κY ) ≤ Pr[X , Y ].

In addition, there is an optimal coupling of X and Y such that

dTV(κX ,κY ) = Pr[X , Y ]. J

We will now use Lemma 4.3 to prove Lemma 4.2.

Proof of Lemma 4.2. The �rst step to prove this lemma is to apply the fact that

the total variation distance is a metric. Thus, we can apply the triangle inequality

to decompose the total variation distance we actually want to bound. For every

x ∈ Ω and t ∈ N, we have

dTV(Q
t (x , ·),πP ) ≤ dTV(Q

t (x , ·), P t (x , ·)) + dTV(P
t (x , ·),πP ).

We will continue by bounding each of these distances separately.

First, we look at dTV(P
t (x , ·),πP ). By setting t ≥ tP

( ε
2

)
as stated in the lemma

and using the de�nition of a mixing time, we directly get dTV(P
t (x , ·),πP ) ≤

ε
2
.

In order to bound dTV(Q
t (x , ·), P t (x , ·)), we apply the Lemma 4.3, which gives

us

dTV(Q
t (x , ·), P t (x , ·)) ≤ Pr[Yt , Xt | Y0 = x ,X0 = x ]

for any coupling between (Xt )t ∈N and (Yt )t ∈N. We construct such a coupling as

follows:

• if at any step i ∈ N it holds that Yi = Xi = y, then select Xi+1,Yi+1
according to an optimal coupling of P(y, ·) and Q(y, ·),

• otherwise, each chain proceeds independently.
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This results in a valid coupling because it preserves the marginal distributions

of each step for each of the chains.

We proceed with upper bounding Pr[Yt , Xt | Y0 = x ,X0 = x ] according to

this coupling. For this, we instead lower bound the probability of the comple-

mentary event Pr[Yt = Xt | Y0 = x ,X0 = x ]. This probability is at least as high

as the probability that both chains agree on every state 1 ≤ i ≤ t . Using the

Markov property of (Xt )t ∈N, (Yt )t ∈N, this can be decomposed as follows

Pr[Yt = Xt | Y0 = x ,X0 = x ]

≥ Pr

[ ⋂
1≤i≤t

Yi = Xi

����� Y0 = x ,X0 = x

]
= Pr[Y1 = X1 | Y0 = x ,X0 = x ]

∏
1<i≤t

Pr[Yi = Xi | Yi−1 = Xi−1 ]

For each one-step transition, we know that

Pr[Yi = Xi | Yi−1 = Xi−1 ] = 1 − Pr[Yi , Xi | Yi−1 = Xi−1 ]

and because we coupled every single step optimally according to Lemma 4.3 if

Yi−1 = Xi−1, we get

Pr[Yi , Xi | Yi−1 = Xi−1 ] = dTV(Q(Yi−1, ·), P(Xi−1, ·)) ≤
ε

2t
.

This gives us

Pr[Yi = Xi | Yi−1 = Xi−1 ] ≥ 1 −
ε

2t
.

Because we know that this holds for every single step, we can lower bound the

probability that it holds for all steps by using Bernoulli’s inequality and get

Pr[Yt = Xt | Y0 = x ,X0 = x ] ≥ (1 −
ε

2t
)t ≥ 1 − t

ε

2t
= 1 −

ε

2

.

Returning to our initial bound, this gives us

dTV(Q
t (x , ·), P t (x , ·)) ≤ Pr[Yt , Xt | Y0 = x ,X0 = x ]

= 1 − Pr[Yt = Xt | Y0 = x ,X0 = x ]
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≤ 1 − (1 −
ε

2

)

=
ε

2

.

Putting everything together, we obtain the desired result

dTV(Q
t (x , ·),πP ) ≤ dTV(Q

t (x , ·), P t (x , ·)) + dTV(P
t (x , ·),πP )

≤
ε

2

+
ε

2

= ε,

which concludes our proof. �

The above lemma is especially interesting in cases were we want to approxi-

mately sample from the stationary distribution πP of a chain P with mixing time

tP (ε) ∈ poly
(n
ε

)
, but where no e�cient way is known for drawing each transi-

tion exactly according to P . Assuming that we can εtr-approximate each single

transition in time poly

(
n
εtr

)
, we might as well run this approximated chain for

tP
( ε
2

)
steps with εtr ≤

ε
2tP ( ε

2
)
. This would result in an overall runtime of poly

(n
ε

)
again and Lemma 4.2 tells us that the resulting distribution is an ε-approximation

of πP . Thus, this lemma can also be seen as a way of reducing one approximate

sampling problem on another.

We also noted that there is a variety of literature dealing with a very similar

problem as Lemma 4.2, namely to bound the di�erence between stationary

distributions for a given transition error. However, we want to point out two

main reasons, why we used our lemma instead.

First of all, most of the literature as Cho and Meyer [CM01], Ferré et al. [FHL12],

Hunter [Hun06], Mitrophanov [Mit05], and Solan and Vieille [SV03] either need

a very detailed understanding of algebraic properties of the Markov chain or

end up with including terms linear in the size of the state space. Both will most

likely not be feasible for algorithmic applications, where little about detailed

algebraic properties is known and the state space tends to be exponential in the

input size.

Secondly, bounding distance between stationary distributions is more re-

strictive than required. For our purpose, it is su�cient that the approximated

dynamics are close to the stationary distribution after a certain amount of time.

34



Application to the polymer Markov chain Section 4.2

However, we do not need the approximated chain to converge to anything near

this stationary distribution or even to converge to any stationary distribution at

all. This has many important implications, like that we not need to assume any

notion of ergodicity for the approximated chain.

4.2 Application to the polymer Markov chain

In this section, we will apply our bound from Lemma 4.2 to our polymer Markov

chain, which will also result in one of our main theorems. As a reminder: the idea

of this section is to replace the sampling from each clique polymer distribution

νi by approximately sampling from it. The approximated distribution will be

modeled by an alternative distribution ξi for each polymer clique. Our �rst

step is to bound the transition error of the resulting Markov chain in terms of

dTV(νi , ξi ).

I Lemma 4.4 (Bound on transition error). Given a polymer model (C,w, �)

ful�lling the generalized polymer mixing condition and a polymer clique cover

Λ1, ...,Λm . Let P be the transitions of the resulting polymer Markov chain and

let Q be the transitions, resulting from sampling from ξi instead of νi whenever

needed for a transition. If for all polymer cliques Λi of the polymer clique cover

dTV(ξi ,νi ) ≤ εin, then the transition error between P andQ is bounded by
εin

2
. J

Proof of Lemma 4.4. Let Γ ∈ F be any polymer family. By de�nition, the total

variation distance between Q(Γ , ·) and P(Γ , ·) can be written as

dTV(Q(Γ , ·), P(Γ , ·)) =
1

2

∑
Γ ′∈F

|Q(Γ , Γ ′) − P(Γ , Γ ′)|.

Replacing νi by ξi does only in�uence transitions that add a polymer γ ∈ Λi to

the current polymer family Γ . Moreover, it does not add any new transitions

between polymer families. Thus, if P(Γ , Γ ′) = 0 it also holds that Q(Γ , Γ ′) = 0.

For simplicity of notation, let C∅ = C ∪ {∅} and Λi, ∅ = Λi ∪ {∅}. This leads to

1

2

∑
Γ ′
|Q(Γ , Γ ′) − P(Γ , Γ ′)| ≤

1

2

∑
γ ∈C∅

������©­«
∑
Λi,∅3γ

ξi (γ )

2m

ª®¬ − ©­«
∑
Λi,∅3γ

νi (γ )

2m

ª®¬
������
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=
1

2m

∑
γ ∈C∅

1

2

������©­«
∑
Λi,∅3γ

ξi (γ )
ª®¬ − ©­«

∑
Λi,∅3γ

νi (γ )
ª®¬
������

≤
1

2m

∑
γ ∈C∅

1

2

∑
Λi,∅3γ

|ξi (γ ) − νi (γ )|.

The latter sum is over all Λi, ∅ that contain γ and ∅ is simply treated like a normal

polymer. Now, note that iterating over all γ ∈ C∅ and over all Λi, ∅ that contain

γ is the same as iterating over all Λi, ∅ and then over all γ ∈ Λi, ∅. Because all

sums here are �nite, we can use this observation to exchange them and obtain

1

2m

∑
γ ∈C∅

1

2

∑
Λi,∅3γ

|ξi (γ ) − νi (γ )| =
1

2m

∑
1≤i≤m

1

2

∑
γ ∈Λi,∅

|ξi (γ ) − νi (γ )|

=
1

2m

∑
1≤i≤m

dTV(ξi ,νi ).

Finally, we know that

∑
1≤i≤m dTV(ξi ,νi ) ≤ mεin and thus

dTV(Q(Γ , ·), P(Γ , ·)) ≤
εin

2

,

which concludes our proof. �

With this bound, we can prove our main theorem of this chapter.

I Theorem 4.5. Let (C,w, �) be a polymer model encoded with input size n
and let Λ1, ..., Λm be a given polymer clique cover.

Given that:

(1) m ∈ poly(n) and we can draw a polymer clique Λi uniformly at random

in time poly(m)

(2) for every polymer clique Λi and every γ ∈ C we can check whether γ ∈ Λi
in time poly(n)

(3) for every γ ,γ ′ we can check whether γ � γ ′ in time poly(n)

(4) (C,w, �) ful�lls the generalized polymer mixing condition as stated in

De�nition 3.3, and e−poly(n) ≤ f (γ ) ≤ epoly(n) for every γ ∈ C
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(5) we can εin-approximately sample from each clique polymer distribution

νi in time poly

(
n
εin

)
Then we can ε-approximately sample from the Gibbs distribution µ in time

poly

(n
ε

)
. J

Proof of Theorem 4.5. Most of the proof of this theorem is similar to the one of

Theorem 3.13. Because of (1) and (4), we can use Lemma 3.6 and Lemma 3.12

to construct a Markov chain with transitions P that converges the stationary

distribution µ with mixing time tP (ε) ∈ poly

(n
ε

)
. In addition, by (1), (2) and

(3) we can do each step of the Markov chain, except for sampling from the

clique polymer distribution νi . Instead, we take some tP
( ε
2

)
≤ t ∈ poly

(n
ε

)
and approximately sample from νi with a total variation distance of at most

ε
t .

According to assumption (5), this can be done in time poly

(nt
ε

)
, which is also

polynomial in
n
ε . The result is a Markov chain with transitions Q . By Lemma 4.4,

we know that the transition error between P and Q is at most
ε
2t . According

Lemma 4.2, we can run this chain with transitions Q for t steps to sample

ε-approximately from µ, which results in an overall runtime in poly

(n
ε

)
. �

The result stated in Theorem 4.5 can be seen as a theoretical framework for

reducing approximate sampling from a polymer model to approximate sampling

from a single polymer clique. This has the advantage that the combinatorial

complexity imposed by the incompatibility relation is completely handled by the

Markov chain. There might be di�erent ways on how the approximate sampling

from each clique polymer distribution can be done. In the next chapter, we will

investigate one of those ways, which we call truncation.
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In this chapter we want to investigate truncation as a way to approximately

sample from each clique polymer distribution. Informally speaking, the idea is

to prove conditions under which only a small number of polymers have most of

the probability mass of the clique polymer distribution. By assuming that we can

draw from this small subset e�ciently enough, this will give us an approximate

sampler for each clique polymer distribution. A valid way to sample from this

smaller subset could for example be to enumerate it and calculate each polymer’s

weight.

This procedure has some similarity with truncation as done in cluster expan-

sion approaches, as those methods use the fact that the �rst terms of the cluster

expansion only depend on small sets of polymers. However, our arguments

will be much more direct, as we will truncate the polymer model, instead of

using analytical properties of an in�nite series. More precisely, we do not even

have to argue about truncation of the entire polymer model but only about the

truncation of single polymer cliques, ignoring polymer interactions that are

caused by the incompatibility relations.

Usually it is useful to talk about truncation in terms of some notion of size of

the polymers. We will stick to this way of thinking and de�ne size as follows.

I De�nition 5.1 (Size of a polymer in a subset). Given a polymer model

(C,w, �) and some subset of polymers C′ ⊆ C, a size-function on C′ is a function

|·|C′ : C
′ → R>0. For a �xed size-function |·|C′ and some polymer γ ∈ C′ we

call |γ |C′ the size of γ in C′. J

In the following sections, we will assume that for a given polymer clique

cover each polymer clique Λi is equipped with a �xed size function |·|i . In most

applications, one size-function |·| : C → R>0 will be de�ned on the entire set

of polymers C. In this case, we can obtain a size-function for each polymer

clique by setting |·|i to be the restriction of |·| to the set Λi . However, the reason

that we de�ned size-functions for subsets of polymers is that our results do not

require the same size-function for each polymer clique. This means we could

even assign di�erent sizes to the same polymer in di�erent cliques.
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Chapter 5 Inner Sampling by Truncation

Given a notion of size, we can now de�ne the truncation of a polymer clique.

I De�nition 5.2 (Truncation of polymer clique). Given a polymer model

(C,w, �)with a polymer clique cover Λ1, ..., Λm and let each polymer clique Λi be

equipped with a size-function |·|i . For any k ∈ R we call Λ≤ki = {γ ∈ Λi | |γ |i ≤
k} the truncation of Λi to size k . In addition, we de�ne Λ>k

i = Λi \ Λ
≤k
i . J

With this general de�nitions of size and truncation for polymer cliques, we can

now start to investigate su�cient conditions for using truncation for approximate

sampling from clique polymer distributions.

5.1 Conditions for truncation

As said before, the main idea is to only consider a small subset of each polymer

clique Λi , namely Λ≤ki for some k ∈ R, and sample from this set, for example by

enumerating all polymers γ ∈ Λ≤ki .

In order to use this for each step of our polymer Markov chain, we have to

express the resulting error in terms of a total variation distance to the actual

clique polymer distribution νi . The �rst step for doing so is to formally de�ne

the probability distribution that results from such a truncation.

I De�nition 5.3 (Truncated clique polymer distribution). Given a poly-

mer model (C,w �) ful�lling the generalized polymer mixing condition as in

De�nition 3.3. In addition, let Λ1, ..., Λm be a polymer clique cover with a size-

function |·|i for each polymer clique. For a polymer clique Λi we de�ne the

clique polymer distribution ξ ki under truncation to k ∈ R as

ξ ki (γ ) =

{
wγ if γ ∈ Λ≤ki ,

0 o.w.

ξ ki (∅) = 1 −
∑

γ ∈Λ≤ki

wγ . J

Note that this is a valid probability distribution over Λi ∪ {∅} because wγ > 0,

and for all k ∈ R we have

∑
γ ∈Λ≤ki

wγ ≤
∑
γ ∈Λi wγ and by Lemma 3.5 we know

that

∑
γ ∈Λi wγ =

∑
γ ∈Λi νi (γ ) ≤ 1.
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Our goal is now to truncate Λi to some k such that dTV(ξ
k
i ,νi ) ≤ εin. The

following lemma will help us by giving a simple connection between a truncation

size k and the resulting total variation distance dTV(ξ
k
i ,νi ).

I Lemma 5.4 (Total variation distance of truncation). Given a polymer

model (C,w, �) ful�lling the generalized polymer mixing condition and a poly-

mer clique cover Λ1, ..., Λm , each equipped with a size-function |·|i . For a polymer

clique Λi the total variation distance between the clique polymer distribution νi
and the distribution ξ ki under truncation to k ∈ R is

dTV(ξ
k
i ,νi ) =

∑
γ ∈Λ>k

i

wγ . J

Proof of Lemma 5.4. Let Λi, ∅ = Λi ∪ {∅}. We write out the de�nition of the total

variation distance and split up the sum as

dTV(ξ
k
i ,νi ) =

1

2

∑
γ ∈Λi,∅

���ξ ki (γ ) − νi (γ )���
=

1

2

©­­«
���ξ ki (∅) − νi (∅)��� + ∑

γ ∈Λ≤ki

���ξ ki (γ ) − νi (γ )��� + ∑
γ ∈Λ>k

i

���ξ ki (γ ) − νi (γ )���ª®®¬.
We now calculate each term separately.

First, note that for all γ ∈ Λ≤ki we have ξ ki (γ ) = wγ = νi (γ ). Thus we know

that ∑
γ ∈Λ≤ki

���ξ ki (γ ) − νi (γ )��� = 0.

In addition, for every γ ∈ Λ>k
i we have ξ ki (γ ) = 0 and νi (γ ) = wγ . This gives

us ∑
γ ∈Λ>k

i

���ξ ki (γ ) − νi (γ )��� = ∑
γ ∈Λ>k

i

��−wγ �� = ∑
γ ∈Λ>k

i

wγ .
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Finally, we get for the remaining part

���ξ ki (∅) − νi (∅)��� =
�������©­­«1 −

∑
γ ∈Λ≤ki

wγ
ª®®¬ −

©­«1 −
∑
γ ∈Λi

wγ
ª®¬
�������

=

������ ∑γ ∈Λi wγ −
∑

γ ∈Λ≤ki

wγ

������
=

∑
γ ∈Λ>k

i

wγ .

This gives us

dTV(ξ
k
i ,νi ) =

1

2

©­­«
∑

γ ∈Λ>k
i

wγ + 0 +
∑

γ ∈Λ>k
i

wγ
ª®®¬

=
∑

γ ∈Λ>k
i

wγ ,

which proves the lemma. �

We can now use this connection to bound the total variation distance between

νi and ξ ki for any k ∈ R. We proceed by introducing the clique truncation

condition as a simple way to relate the size and the weight of polymers.

I De�nition 5.5 (Clique truncation condition). Let Λi be a polymer clique

of a polymer model (C,w, �). In addition let n be the input size which encodes

the polymer model and |·|i is a size-function on Λi . We say that this polymer

clique ful�lls the clique truncation condition for some monotonic increasing,

invertible function д : R→ R>0 if∑
γ ∈Λi

д(|γ |i )wγ ≤ h(n)

for some positive function h(n) ∈ poly(n). J

Now we can state which truncation bounds we can obtain under this clique

truncation condition.
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I Lemma 5.6 (Clique truncation). Let Λi be a polymer clique of a polymer

model (C,w, �) that ful�lls the generalized polymer mixing condition. In addition

let n be the input size which encodes the polymer model and |·|i is a size-function

on Λi . If Λi ful�lls the clique truncation condition for two functions д,h as in

De�nition 5.5, then for every εin ∈ (0, 1] we have dTV(ξ
k
i ,νi ) ≤ εin for any

k ≥ д−1(h(n)εin

). J

Proof of Lemma 5.6. By Lemma 5.4 we know that dTV(ξ
k
i ,νi ) =

∑
γ ∈Λ>k

i
wγ . Be-

cause of the clique truncation condition and the monotonicity of д, we observe

that

д(k)
∑

γ ∈Λ>k
i

wγ ≤
∑

γ ∈Λ>k
i

д(|γ |i )wγ

≤
∑
γ ∈Λi

д(|γ |i )wγ

≤ h(n).

As д is positive, we can divide by д(k) to get∑
γ ∈Λ>k

i

wγ ≤
h(n)

д(k)
.

Now we set k ≥ д−1(h(n)εin

), which is possible as
h(n)
εin

> 0 and д is invertible. We

obtain ∑
γ ∈Λ>k

i

wγ ≤
h(n)

д(д−1(h(n)εin

))
= εin,

which concludes our proof. �

The key idea behind Lemma 5.6 will be the following. If the time for drawing

a polymer according to ξ ki (e.g. by enumerating Λ≤ki completely) can be bounded

by some function ti (k), we only need to ensure ti (д
−1(x)) ∈ poly(x) to get an

εin-approximate sampler in time poly

(
n
εin

)
.
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5.2 Algorithmic application of truncation

We can now start to use our observations to construct an algorithm for sampling

from the Gibbs distribution using truncation. Before doing so, we want to add

a comment on the clique truncation condition from De�nition 5.5. Although

it �rst seems like the algorithmic use of this bound would require to choose

two functions д,h, in general it will su�ce to select a function д and show the

existence of any polynomial upper bound h on this sum.

We now state our main theorem of this chapter in its most general form.

I Theorem 5.7. Let (C,w, �) be a polymer model encoded with input size n. In

addition, let Λ1, ...,Λm be a given polymer clique cover with a �xed size-function

|·|i for each polymer clique.

Given that:

(1) m ∈ poly(n) and we can draw a polymer clique Λi uniformly at random

in time poly(m)

(2) for every polymer clique Λi and every γ ∈ C we can check whether γ ∈ Λi
in time poly(n)

(3) for every γ ,γ ′ we can check whether γ � γ ′ in time poly(n)

(4) (C,w, �) ful�lls the generalized polymer mixing condition as stated in

De�nition 3.3, and e−poly(n) ≤ f (γ ) ≤ epoly(n) for every γ ∈ C

(5) we can sample exactly from each truncated clique polymer distribution

ξ ki in time ti (k) (e.g. enumerate Λ≤ki and calculate each weight)

(6) each polymer clique Λi ful�lls the clique truncation condition for functions

дi ,hi as in De�nition 5.5 and ti (д
−1
i (x)) ∈ poly(x)

Then we can ε-approximately sample from the Gibbs distribution µ in time

poly

(n
ε

)
. J

Proof of Theorem 5.7. To prove this theorem, we simply show that its assump-

tions imply the assumptions from Theorem 4.5. First, note that assumptions

(1) to (4) are exactly the same as (1) to (4) of Theorem 4.5. Thus, it is su�cient

to show that (5) and (6) of Theorem 5.7 imply (5) of Theorem 4.5. Namely, we

want to show that we can sample from each νi at least εin-approximately in time

44



Algorithmic application of truncation Section 5.2

poly

(
n
εin

)
. Because of (6) and Lemma 5.6, we know that dTV(ξ

k
i ,νi ) ≤ εin for any

k ≥ д−1i (
hi (n)
εin

). For our choice of k and because of (5), sampling from ξ ki takes

time ti (д
−1
i (

hi (n)
εin

)). According to (6) we know that ti (д
−1
i (

hi (n)
εin

)) ∈ poly

(
hi (n)
εin

)
.

Noting that by de�nition hi (n) ∈ poly(n) concludes our proof. �

Because Theorem 5.7 is very general, there are many interesting and more

speci�c versions for di�erent cases that can be derived. In many applications,

enumerating all γ ∈ Λi and calculating each weight wγ might be the best known

way to sample from ξ ki . Often, this will result in ti (k) ∈ e
O(k )

and imply that дi
has to be an exponential function. An interesting corollary of Theorem 5.7 for

such cases and under mild assumptions on the size-function is the following.

I Corollary 5.8. Let (C,w, �) be a polymer model encoded with input size n.

In addition let Λ1, ..., Λm be a given polymer clique cover and let the set of all

polymers C be equipped with a size function |·|.

Given that:

(1) m ∈ poly(n) and we can draw a polymer clique Λi uniformly at random

in time poly(m)

(2) for every polymer clique Λi and every γ ∈ C we can check whether γ ∈ Λi
in time poly(n)

(3) for every γ ,γ ′ we can check whether γ � γ ′ in time poly(n)

(4) we can sample exactly from each truncated clique polymer distribution

ξ ki in time eO(k )

(5) for everyγ ∈ C the size is bounded by |γ | ∈ poly(n), and for every polymer

clique Λi there is a polymer γ ∈ Λi with |γ | ∈ O(log(n))

(6) for every polymer γ ∈ C it holds that∑
γ ′�γ

ea |γ
′ |
wγ ′ ≤ ea |γ |

for some constant a > 0

Then we can ε-approximately sample from the Gibbs distribution µ in time

poly

(n
ε

)
. J
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Proof of Corollary 5.8. We show that this corollary is a special case of Theo-

rem 5.7. First, note that (1) to (3) in Corollary 5.8 are the same as (1) to (3) in

Theorem 5.7. In addition (6) implies the generalized polymer mixing condition

for f (γ ) = ea |γ | . Using the upper bound for the size in (5) and the fact that a

size-function is positive by de�nition, we get 1 ≤ ea |γ | ≤ epoly(n). Thus, (4) from

Theorem 5.7 is ful�lled as well.

For every polymer clique Λi we can obtain a size-function |·|i by restricting

|·| to Λi . Note that (4) in Corollary 5.8 is essentially (5) of Theorem 5.7 with

ti (k) ∈ eO(k ). By observing that all polymers in Λi are by de�nition pairwise

incompatible, we get for every γ ∈ Λi∑
γ ′∈Λi

ea |γ
′ |iwγ ′ ≤

∑
γ ′�γ

ea |γ
′ |
wγ ′ ≤ ea |γ | .

We now set дi (k) = eak , which is monotonically increasing and invertible for

a > 0. In addition, we can choose γmin ∈ Λi such that for all γ ′ ∈ Λi it holds

that |γmin | ≤ |γ
′ |, as we have only a �nite set of polymers. Now, (5) gives

us |γmin | ∈ O(log(n)) and thus ea |γmin | ∈ poly(n). This proofs that the clique

truncation condition holds for every polymer clique Λi .
It remains to show that ti (д

−1
i (x)) ∈ poly(x). By de�nition, we have д−1i (x) =

log(x )
a . Thus, for ti (k) ∈ O

(
ek

)
, we get ti (д

−1
i (x)) ∈ poly(x). This �nally shows

that also (6) of Theorem 5.7 is ful�lled. The corollary follows directly. �
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6 Comparison & Application

In this chapter, we are going to compare our results to those that can be found in

existing literature. Most of this literature focuses on approximating the partition

function in the �rst place. In order to make our results more comparable, we

will �rst prove that we can e�ciently ε-approximate the partition function Z
under the same conditions that we need for sampling from µ.

6.1 Approximating the partition function

In this section, we will prove that the conditions from Theorem 3.13, Theorem 4.5

or Theorem 5.7 are also su�cient for a randomized approximation of the parti-

tion function. It is well known that polymer models ful�ll the self-reducibility

property, under which e�cient randomized generation in some sense implies

e�cient randomized approximation (see for example Jerrum et al. [JVV86]). How-

ever, this self-reducibility in general refers to the deletion of single polymers.

That means using this kind of self-reducibility might result in an exponential

sequence of reductions if the number of polymers is exponential.

Whenever truncation is applied, one can argue that after truncation the num-

ber of polymers is polynomial in n and
1

ε and thus, self-reducibility on the basis

of single polymers su�ces to get an e�cient approximation algorithm. However,

in the setting of Theorem 3.13 and especially Theorem 4.5 this argument does

not apply, as these theorems do not involve truncation.

In this section, we will show that under the generalized polymer mixing

condition it is su�cient to have a polymer clique cover of polynomial size in

order to derive a randomized approximation within a polynomial number of

self-reduction steps. Both conditions are crucial for our sampling theorems

anyway.

For the rest of this section, we will assume that we have a polymer model

(C,w, �) with a polymer clique cover Λ1, ..., Λm . We de�ne a sequence of poly-

mer models (Cj ,w, �) for 0 ≤ j ≤ m with C0 = ∅ and Cj = Cj−1 ∪ Λj for

1 ≤ j ≤ m. We denote the corresponding sets of polymer families with Fj ,
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partition functions with Z j and Gibbs distributions with µ j . Note that we have

Z0 = 1 and Zm = Z . Moreover, we de�ne σj =
Z j−1
Z j

for 1 ≤ j ≤ m. Now it holds

that

Z =
∏

1≤j≤m

Z j

Z j−1
=

( ∏
1≤j≤m

σj

)−1
.

We will now try to approximate each σj . For this, let X j (Γ ) be a random

variable with the values

X j (Γ ) =

{
1 if Γ ∈ Fj−1,

0 o.w.

for Γ drawn according to µ j . Note that if we can e�ciently check if γ ∈ Λi for

any polymer clique Λi and anyγ ∈ C, then we can also calculateX j (Γ ) e�ciently

by doing at mostm(j − 1) ≤ m2
such checks. In addition, it holds that

E

[
X j (Γ )

]
=

∑
Γ ∈Fj

µ j (Γ )X j (Γ ) =
∑

Γ ∈Fj−1

µ j (Γ ) =
∑

Γ ∈Fj−1

∏
γ ∈Γ wγ

Z j
=
Z j−1

Z j
= σj .

Because Z j ≥ Z j−1 we know that σj ≤ 1. Moreover, note that every polymer

family Γ ∈ Fj \ Fj−1 contains exactly one polymer γ ∈ Cj \ Cj−1 ⊆ Λj . If it

would contain no such polymer, the family would have been in Fj−1 and if it

contains more than one, it would not be a polymer family as all polymers in Λj
are pairwise incompatible. Thus, we have

Z j = Z j−1 +
∑

Γ ∈Fj \Fj−1

∏
γ ∈Γ

wγ

= Z j−1 +
∑

γ ∈Cj \Cj−1

∑
Γ ∈Fj

s.t. γ ∈Γ

∏
γ ′∈Γ

wγ ′

= Z j−1 +
∑

γ ∈Cj \Cj−1

wγ

©­­­«
∑
Γ ∈Fj

s.t. γ ∈Γ

∏
γ ′∈Γ \{γ }

wγ ′

ª®®®¬
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≤ Z j−1 +
∑

γ ∈Cj \Cj−1

wγ
©­«

∑
Γ ∈Fj−1

∏
γ ′∈Γ

wγ ′
ª®¬

= Z j−1 + Z j−1

∑
γ ∈Cj \Cj−1

wγ

≤ Z j−1 + Z j−1

∑
γ ∈Λj

wγ

≤ 2Z j−1.

The last inequality comes from the fact that

∑
γ ∈Λj wγ ≤ 1, as we know from

Lemma 3.5. Together, this gives us
1

2
≤ σj ≤ 1.

We go on with approximating each σj . For this, we need to approximately

sample from each µ j . The following lemma will help us doing so, given we can

approximately sample from µ.

I Lemma 6.1. Give a polymer model (C,w, �) with encoding size n and a

polymer clique cover Λ1, ...Λm . In addition, de�ne the sequence of polymer

models (Cj ,w, �) for 0 ≤ j ≤ m as above. Given that:

(1) (C,w, �) ful�lls the conditions of Theorem 3.13, Theorem 4.5 or Theo-

rem 5.7

(2) for every 1 ≤ j ≤ m we can draw a polymer clique from Λ1, ..., Λj uni-

formly at random in at most the time that is needed to draw one uniformly

from Λ1, ...,Λm

Then the time for sampling ε-approximately from µ j for every ε ∈ (0, 1] and

1 ≤ j ≤ m is upper bounded by the time that is needed to ε-approximately

sample from µ. J

Proof of Lemma 6.1. First, note that it holds that Cj ⊆ Cm = C. In addition, all

other conditions of Theorem 3.13, Theorem 4.5 and Theorem 5.7 imply that

the same conditions are also ful�lled when only considering a subset of the

original polymer cliques. Thus, we can now apply the same sampling schema

to approximately sample from µ j that we apply to sample from µ, except that

the Markov chain only draws a polymer clique from Λ1, ..., Λj uniformly at

random. Note that (Cj ,w, �) has a polymer clique cover of size j . Bys Lemma 3.12,

we know that the mixing time of the polymer Markov chain is monotonically
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increasing in the number of polymer cliques in the polymer clique cover. Thus,

we know that for every j ≤ m the mixing time for sampling from µ j is upper

bounded by the mixing time for sampling from µm = µ. Arguing that the time

for every other step of the sampling algorithm for (Cj ,w, �) is upper bounded

by the time needed on (C,w, �) concludes our proof. �

Now that we know that under mild assumptions a sampler for µ also gives us

a sampler for µ j with at most the same runtime, we can us this to construct an

FPRAS for Z . The ides will be to approximate each σj =
Z j−1
Z j

by some σ̂j and use

them to get an approximation of Z as shown in Algorithm 1.

Algorithm 1: FPRAS for the partition function Z

Data: error bound ε , polymer model (C,w, �), polymer clique cover of

sizem
Result: ε-approximation of Z with probability at least

3

4

1 εm =
ε

10m ;

2 l = 200m
ε2 + 1 ;

3 for 1 ≤ j ≤ m do

4 for 1 ≤ i ≤ l do

5 εm-approximately sample Γ (i)j from µ j ;

6 σ̂j =
1

l
∑

1≤i≤l X j (Γ
(i)
j );

7 σ̂ =
∏

1≤j≤m σ̂j ;
8 return

1

σ̂ ;

I Theorem 6.2. Given a polymer model (C,w, �) with encoding size n and a

polymer clique cover Λ1, ..., Λm . Given that:

(1) (C,w, �) ful�lls the conditions of Theorem 3.13, Theorem 4.5 or Theo-

rem 5.7

(2) for every 1 ≤ j ≤ m we can draw a polymer clique from Λ1, ..., Λj uni-

formly at random in at most the time that is needed to draw one uniformly

from Λ1, ..., Λm

Then Algorithm 1 is an FPRAS for the partition function Z . Moreover, the

runtime can be bounded by the time needed for drawing O

(
m2

ε2

)
samples from

an
ε

10m -approximation of µ. J
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The proof uses similar arguments as other self-reducibility methods, such as

for example Proposition 3.4 of Jerrum [Jer03].

Proof of Theorem 6.2. We start by showing that our algorithm computes the

desired result, given that we can sample approximately from each µ j . The

prove this, we show two things. First, we argue that E[σ̂ ] is a su�ciently good

approximation for
1

Z . Then we show that σ̂ is close to E[σ̂ ] with a su�ciently

high probability. Finally, we conclude that
1

σ̂ ε-approximates Z .

For each 1 ≤ j ≤ m, we have

σj −
ε

10

≤ E

[
σ̂j

]
≤ σj +

ε

10

.

Because
1

2
≤ σj ≤ 1, this implies that(

1 −
ε

5

)
σj ≤ E

[
σ̂j

]
≤

(
1 +

ε

5

)
σj .

In addition, we know that all σ̂j are independent. Thus, we have E[σ̂ ] =∏
1≤j≤m E

[
σ̂j

]
. By further using the fact that

1

Z =
∏

1≤j≤m σj , this gives us(
1 −

ε

5m

)m 1

Z
≤ E[σ̂ ] ≤

(
1 +

ε

5m

)m 1

Z
.

We now have a bound on E[σ̂ ] in terms of
1

Z . We continue by deriving a bound

on σ̂ in terms of E[σ̂ ]. To do so, we apply Chebyshev’s inequality to get

Pr

[
|σ̂ − E[σ̂ ]| ≥

ε

5

E[σ̂ ]
]
≤

25

ε2
Var[σ̂ ]

E[σ̂ ]2

=
25

ε2

(
E

[
σ̂ 2

]
E[σ̂ ]2

− 1

)

Again, by independence of the σ̂j we have E[σ̂ ]2 =
∏

1≤j≤m E

[
σ̂j

]
2

and E

[
σ̂ 2

]
=∏

1≤j≤m E

[
σ̂j

2
]
. Thus, we can rewrite our bound as

Pr

[
|σ̂ − E[σ̂ ]| ≥

ε

5

E[σ̂ ]
]
≤

25

ε2

(
E

[
σ̂ 2

]
E[σ̂ ]2

− 1

)
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=
25

ε2

( ∏
1≤j≤m

E

[
σ̂j

2
]

E

[
σ̂j

]
2
− 1

)
=

25

ε2

( ∏
1≤j≤m

(
1 +

Var

[
σ̂j

]
E

[
σ̂j

]
2

)
− 1

)
.

Next, we need to bound the variance of σ̂j for 1 ≤ j ≤ m. For this, remember

that σ̂j =
1

l
∑

1≤i≤l X j (Γ
(i)) where Γ (1)), ..., Γ (l )) are independently drawn from

an
ε
10

-approximation of µ j . Thus, we have

Var

[
σ̂j

]
=

1

l2
Var

[ ∑
1≤i≤l

X j (Γ
(i))

]
=

1

l
Var

[
X j (Γ )

]
for Γ ∈ Fj drawn from an approximation of µ j . Now, note thatX j (Γ ) is Bernoulli

distributed with Pr

[
X j (Γ ) = 1

]
= E

[
σ̂j

]
. This gives us

Var

[
σ̂j

]
=

1

l
E

[
σ̂j

]
(1 − E

[
σ̂j

]
).

By using the fact that

E

[
σ̂j

]
≥

(
1 −

ε

5

)
σj ≥

(
1 −

1

5

)
1

2

≥
1

3

we get the bound

Var

[
σ̂j

]
E

[
σ̂j

]
2
=

1

lE
[
σ̂j

] − 1

l
≤

2

l
.

Now that we have this bound on the variance of σ̂j , we obtain

Pr

[
|σ̂ − E[σ̂ ]| ≥

ε

5

E[σ̂ ]
]
≤

25

ε2

((
1 +

2

l

)m
− 1

)
≤

25

ε2

(
e

2m
l − 1

)
≤

25

ε2
2m

l − 1
.
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The last inequality comes from the fact that e
x
k+1 ≤ 1 + x

k for 0 ≤ x ≤ 1 and

k ∈ N>0. For l ≥ 200m
ε2 + 1 as in our algorithm, this implies that with probability

at least 1 − 25

ε2
ε2
100
= 3

4
that we have

(1 −
ε

5

)E[σ̂ ] ≤ σ̂ ≤ (1 +
ε

5

)E[σ̂ ].

We now have both bounds that we need. We rewrite them in a slightly weaker

form by using the fact that e−
x
k ≤ 1 − x

k+1 for 0 ≤ x ≤ 1 and k ∈ N>0. By this

we get

e−
ε
4 E[σ̂ ] ≤ σ̂ ≤ e

ε
4 E[σ̂ ]

e−
ε
4

1

Z
≤ E[σ̂ ] ≤ e

ε
4

1

Z
.

Note that this directly implies

e−
ε
2

1

Z
≤ σ̂ ≤ e

ε
2

1

Z
.

Finally, for ε ∈ (0, 1] this results in

(1 − ε)Z ≤ e−
ε
2Z ≤

1

σ̂
≤ e

ε
2Z ≤ (1 + ε)Z

with probability at least
3

4
.

Now that we know that our algorithm produces the desired output, it remains

to argue that the runtime is as stated in the theorem. Because the polymer model

(C,w, �) ful�lls the conditions of Theorem 3.13, Theorem 4.5 or Theorem 5.7,

we know that we can εS -approximately sample from µ in time polynomial in

n and
1

εS
. Because m ∈ poly(n) this allows us to sample with an error of at

most εS =
ε

10m in time polynomial in n and
1

ε . By Lemma 6.1, this also upper

bounds the runtime for approximately sampling from each µ j for 1 ≤ j ≤ m.

In addition, we have to draw ( 200mε2 + 1)m ∈ O
(
m2

ε2

)
samples. This results in an

overall runtime in poly

(n
ε

)
. �

With this equivalence of approximately sampling from µ and approximatingZ ,

we can start comparing our conditions for sampling with the existing literature.
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6.2 Comparison to cluster expansion

As already discussed in the related work, using the cluster expansion is one

of the most common ways for approximating the partition function. One of

the main advantages of this technique is that it also works for complex-valued

weights. A necessary (although not su�cient) condition for the application of

such approaches is to show that the cluster expansion converges absolutely for

a certain set of weights w. Many conditions to guarantee absolute convergence

have been proposed so far. We will mainly refer to the conditions that are stated

by Fernández and Procacci [FP07], as this is the most comprehensive study that

we found. We will only state the real-valued version of the conditions, as only

those are of interest for our approach. However, the complex-valued version can

be obtained by taking the modulus of the weights in each condition.

Our discussion will focus on two convergence conditions. The �rst one is the

Kotecký-Preiss condition, as it turned out to be most convenient to use for many

applications of polymer models.

I De�nition 6.3 (Kotecký-Preiss condition, [KP86]). We say that a poly-

mer model (C,w, �) ful�lls the Kotecký-Preiss condition if there are two func-

tions д, f : C → R≥0 such that for all γ ∈ C∑
γ ′�γ

e f (γ
′)+д(γ ′)

wγ ′ ≤ f (γ ). J

Note that Fernández and Procacci [FP07] discussed the least restrictive (weak-

est) version of the Kotecký-Preiss condition, namely the case that д(γ ) = 0.

The second condition we would like to discuss is the one that was introduced

by Fernández and Procacci [FP07] themselves. We will refer to this condition as

Fernández-Procacci condition. To state it, the de�nition of incompatible polymer

families will be needed.

I De�nition 6.4 (Incompatible polymer families). For a polymer model

(C,w, �) with polymer families F , we de�ne for every polymer γ ∈ C the set of

incompatible polymer families as

Fγ = {Γ ∈ F | ∀γ
′ ∈ Γ : γ ′ � γ }. J

Note that especially ∅ ∈ Fγ for all γ ∈ C. Based on the notion of incompatible

polymer families, the Fernández-Procacci condition can be stated as follows.
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I De�nition 6.5 (Fernández-Procacci condition, [FP07]). We say that a

polymer model (C,w, �) ful�lls the Fernández-Procacci condition if there is a

function f : C → R≥0 such that for all γ ∈ C∑
Γ ∈Fγ

∏
γ ′∈Γ

f (γ ′)wγ ′ ≤ f (γ ),

where we assign the value 1 to the empty product for ∅ ∈ Fγ . J

The reader might notice that Fernández and Procacci [FP07] stated a slightly

di�erent version, namely

wγ
©­«
∑
Γ ∈Fγ

∏
γ ′∈Γ

f ′(γ ′)
ª®¬ ≤ f ′(γ ).

The equivalence of our version of the condition can be seen by setting f ′(γ ) =

f (γ )wγ or f (γ ) =
f ′(γ )
wγ

, respectively. The reason for choosing the Fernández-

Procacci condition is that it is to the best of our knowledge the least restrictive

characterization for convergence of the cluster expansion of abstract polymer

models. Moreover, it is directly implied by most other criteria, like the Do-

brushin’s condition (see [Dob96]) or the Kotecký-Preiss condition.

Mixing time of the polymer Markov chain

We will start with investigating how the above conditions relate to the mixing

time of the polymer Markov chain. More precisely, the core of this investigation

will be a comparison between the generalized polymer mixing condition and

the conditions for convergence of the cluster expansion stated above.

I Proposition 6.6. Given a polymer model (C,w, �)with polymer clique cover

Λ1, ...,Λm . If the polymer model ful�lls the Fernández-Procacci condition for

some function f , then it also ful�lls the generalized polymer mixing condition

for the same function and the polymer Markov chain is mixing in time

tP (ε) ∈ O

(
m2

ln

(
m2

maxγ ∈C f (γ )

minγ ∈C f (γ )

)
2

ln

(
1

ε

))
. J
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Proof of Proposition 6.6. To prove this, we �rst derive a lower bound on the left-

hand side of the Fernández-Procacci condition as stated in De�nition 6.5. First,

note that for all γ ∈ C and γ ′ � γ it holds that {γ ′} ∈ Fγ . This especially

includes the family {γ } itself. Together with the fact that ∅ ∈ Fγ , this yields

1 +
∑
γ ′�γ

f (γ ′)wγ ′ ≤
∑
Γ ∈Fγ

∏
γ ′∈Γ

f (γ ′)wγ ′ ≤ f (γ ).

The second inequality comes directly from the Fernández-Procacci condition.

By subtracting 1, we get∑
γ ′�γ

f (γ ′)wγ ′ ≤

(
1 −

1

f (γ )

)
f (γ ) < f (γ ),

which shows that the Fernández-Procacci condition for a function f implies the

generalized polymer mixing condition for the same function. By application of

Lemma 3.12 we get the desired mixing time and conclude our proof. �

Note that the lower bound for the left-hand side of the Fernández-Procacci

condition in the above proof is precisely the best case scenario for this condition.

Namely, this is the case when � is an equivalence relation, meaning that it is

not only re�exive and symmetric but also transitive. In terms of the polymer

graph interpretation, this means that the maximum connected subgraphs of the

polymer graph are polymer cliques.

The result from Proposition 6.6 directly extends to the those conditions that

imply the Fernández-Procacci condition, including Dobrushins condition and the

Kotecký-Preiss condition. Further, assume our polymer model is encoded with

input size n. If we havem ∈ poly(n) and if it holds that e−poly(n) ≤ f (γ ) ≤ epoly(n),
Proposition 6.6 directly implies the existence of a Markov chain for sampling

from µ with mixing time polynomial in n and ln

(
1

ε

)
.

The generalized polymer mixing condition alone does not always give us an

e�cient approximate sampler or an FPRAS for the partition function. Additional

assumptions as in Theorem 3.13, Theorem 4.5 or Theorem 5.7 are required.

However, neither does convergence of the cluster expansion directly imply

an e�cient approximation algorithm. We will proceed by investigating these

additional assumptions.
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Existence of an e�icient algorithm

We would like to discuss how the additional assumptions that are needed for

our approach compare to those from cluster expansion algorithms. Before doing

so, we would like to give a formal argument that both, the generalized polymer

mixing condition and cluster expansion are presumably insu�cient for the

existence of an FPTAS or an FPRAS for the partition function of abstract polymer

models. For this, we will use the decision problem Unambiguous Sat.

I De�nition 6.7 (Unambiguous Sat). Given a Boolean formula Φ in con-

junctive normal form with n variables, such that there is at most one assignment

to those variables that satis�esΦ, decide whether there exists such a satisfying

assignment. J

A well known result by Valiant and Vazirani [VV86] shows that the existence

of any (randomized) polynomial time algorithm for deciding Unambiguous

Sat would imply NP = RP. This even holds for randomized algorithms with a

two-sided error, as this would imply NP ⊆ BPP, which again would lead to NP =
RP (see for example Papadimitriou [Pap03], problem 11.5.18).

I Proposition 6.8. Unless NP = RP, the Kotecký-Preiss condition as stated

in De�nition 6.3 is not a su�cient condition for the existence of an FPTAS or

FPRAS for the partition function of a polymer model. J

Proof Proposition 6.8. Given an instanceΦ of Unambiguous Sat withn variables.

We treat every possible assignment to those variables as a polymer γ ∈ C and

de�ne the incompatibility to be the complete graph of these polymers � = C2.

Note that this does not require to actually enumerate all such assignments, as

the set of polymers has not to be given explicitly. Next we de�ne a weight for

every assignment γ ∈ C as

wγ =

{
1

8
if γ satis�esΦ

1

2
n+4 o.w.

First, we prove that this polymer model satis�es the Kotecký-Preiss condition.

We set f (γ ) = 1 and д(γ ) = 0 for all γ ∈ C. There are at most 2
n

non-satisfying

assignments and at most 1 satisfying assignment. We get for all γ ∈ C that∑
γ ′�γ

e f (γ
′)
wγ ′ = e

∑
γ ′∈C

wγ ′ ≤ e

(
2
n 1

2
n+4 +

1

8

)
= e

3

16

< f (γ ).
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Now assume we can deterministically approximate the partition function Z by

Z ′ such that (1 − ε)Z ≤ Z ′ ≤ (1 + ε)Z for all ε ∈ (0, 1] in time polynomial in n
and

1

ε . We choose some constant ε ≤ 1

128
. Note that ifΦ is satis�able, we have

Z ≥ 1 + 1

8
. Thus, we know that

Z ′ ≥ (1 − ε)Z ≥

(
1 −

1

128

) (
1 +

1

8

)
> 1 +

1

8

−
2

128

= 1 +
7

64

.

IfΦ is not satis�able, we have Z ≤ 1 + 2
n

2
2+4 = 1 + 1

16
. Thus, we get that

Z ′ ≤ (1 + ε)Z ≤

(
1 +

1

128

) (
1 +

1

16

)
< 1 +

1

16

+
2

128

= 1 +
5

64

.

By checking ifZ ′ ≤ 5

64
orZ ′ ≥ 7

64
, we could decide ifΦ is satis�able in polynomial

time, which would imply NP = RP.

Now let us assume we could get such an approximation of Z with probability

of at least
3

4
. By the same arguments, we could decide if Φ is satis�able in

polynomial time with a two-sided failure probability of at most
1

4
. Again, this

implies NP = RP. �

Note that Proposition 6.8 not only shows that the Kotecký-Preiss condition

alone is not su�cient, but it also extends to Fernández-Procacci condition and

convergence of the cluster expansion in general, as they are implied by the

Kotecký-Preiss condition.

For the same reason, Proposition 6.8 shows that the generalized polymer mix-

ing condition is not su�cient for an e�cient randomized approximation. Further,

the polymer model from the proof has a polymer clique cover of constant size,

and γ � γ ′ and γ ∈ Λi are trivial to decide. Thus, we see that even the assump-

tions (1)–(4) of Theorem 3.13, Theorem 4.5 and Theorem 5.7 are not su�cient

for an approximation of the partition function or for approximate sampling from

the Gibbs distribution. The intuitive reason is that those conditions only ensure

that we can handle the combinatorial complexity that comes from sampling an

independent set with respect to the incompatibility relation and the weights of

each polymer. However, the sheer number of polymers causes additional di�-

culty, especially without any further structural knowledge about the polymer

model. We encapsulate this in sampling from the polymer clique distribution

νi for each clique Λi . From this point of view, Theorem 3.13, Theorem 4.5 and
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Theorem 5.7 can be seen as di�erent ways to solve this problem, depending on

how hard it is to sample from each polymer clique. In general, the combination

of truncation and enumeration as proposed in Theorem 5.7 seems to be the best

known way to do this sampling from each clique distribution.

This truncation and enumeration approach is similar to what is done in cluster

expansion algorithms. If each polymer weight can be expressed as a function

of some parameter z ∈ C such that the partition function is a polynomial in z,

Theorem 3.4 of Casel et al. [Cas+19] shows a general setting under which conver-

gence of the cluster expansion can be used to obtain an e�cient approximation.

To the best of our knowledge, this is also the only approximation algorithm for

the partition function that is proposed for abstract polymer models.

Unfortunately, a general comparison between Theorem 5.7 and cluster expan-

sion is hard, because our approach is based on the interplay of the generalized

polymer mixing condition and the clique truncation condition and less on ana-

lytical properties. However, some more insights can be gained when assuming

that the functions in the Kotecký-Preiss condition and the Fernández-Procacci

condition take a speci�c form. Fernández and Procacci [FP07] stated that the

following size-dependent versions of both conditions are common.

I De�nition 6.9 (Size-dependent Kotecký-Preiss condition). We say a

polymer model (C,w, �) with a size-function |·| ful�lls the size-dependent

Kotecký-Preiss condition if there is some a ∈ R>0 and a function д : C → R≥0
such that for all γ ∈ C ∑

γ ′�γ

ea |γ
′ |+д(γ ′)

wγ ′ ≤ a |γ |. J

This is the Kotecký-Preiss condition from De�nition 6.3 with f (γ ) = a |γ |.
Again, note that Fernández and Procacci [FP07] discuss the version where д(γ ) =
0 for all γ ∈ C, which is obviously optimal if д can be chosen freely.

Similarly, the Fernández-Procacci condition has a size-dependent version.

IDe�nition 6.10 (Size-dependent Fernández-Procacci condition). We say

a polymer model (C,w, �) with a size-function |·| ful�lls the size-dependent

Fernández-Procacci condition if there is some a ∈ R>0 such that for all γ ∈ C∑
Γ ∈Fγ

∏
γ ′∈Γ

ea |γ
′ |
wγ ′ ≤ ea |γ | . J
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For these size-dependent conditions, there are some very interesting relations

to our approach.

I Proposition 6.11. Let (C,w, �) be a polymer model encoded with input size

n. In addition let Λ1, ...,Λm be a given polymer clique cover and let the set of all

polymers C be equipped with a size-function |·|.

Given that:

(1) m ∈ poly(n) and for every 1 ≤ j ≤ m we can draw a polymer clique Λi
from Λ1, ..., Λj uniformly at random in time poly(m)

(2) for every polymer clique Λi and every γ ∈ C we can check whether γ ∈ Λi
in time poly(n)

(3) for every γ ,γ ′ we can check whether γ � γ ′ in time poly(n)

(4) we can sample exactly from each truncated clique polymer distribution

ξ ki in time eO(k ) (e.g., enumerate Λ≤ki and calculate weights)

(5) for every γ ∈ C the size is bounded by |γ | ∈ poly(n)

Then the following holds.

1) If there is a polymer γ ∈ Λi with |γ | ∈ O(log(n)) for every polymer clique

Λi , then size-dependent Fernández-Procacci condition is su�cient for the

existence of an FPRAS for the partition function.

2) Otherwise, the size-dependent Kotecký-Preiss condition is su�cient for

the existence of an FPRAS for the partition function. J

Proof of Proposition 6.11. We start with case 1). From Proposition 6.6 we know

that the Fernández-Procacci condition implies the generalized polymer mixing

condition for the same function f . Thus, we have∑
γ ′�γ

ea |γ
′ |
wγ ′ ≤ ea |γ | .

We can now apply Corollary 5.8 and Theorem 6.2, which proves this case of the

proposition.

60



Graph polymers from vertex spin systems Section 6.3

Next, we consider case 2). As the function д from the size-dependent Kotecký-

Preiss condition is non negative, it holds that∑
γ ′�γ

ea |γ
′ |
wγ ′ ≤

∑
γ ′�γ

ea |γ
′ |+д(γ ′)

wγ ′ ≤ a |γ | ≤ ea |γ | .

Thus, the polymer model ful�lls the generalized polymer mixing condition for

f (γ ) = ea |γ | . In addition, we have for every polymer clique Λi and γ ∈ Λi that∑
γ ′∈Λi

ea |γ
′ |
wγ ′ ≤

∑
γ ′�γ

ea |γ
′ |
wγ ′ ≤

∑
γ ′�γ

ea |γ
′ |+д(γ ′)

wγ ′ ≤ a |γ |.

By assumption (5) this implies that every polymer clique Λi ful�lls the clique

truncation condition with дi (k) = eak . Moreover, note that д−1i (x) =
ln(x )
a , and

by assumption (4) we have that ti (д
−1
i (x)) ∈ poly(x). We conclude the proof by

application of Theorem 5.7 and Theorem 6.2. �

Proposition 6.11 shows that under mild assumptions the size-dependent

Fernández-Procacci condition or the size-dependent Kotecký-Preiss condition

are su�cient conditions for an FPRAS for the partition function, even if the

partition function of the polymer model might not be a polynomial of a single pa-

rameter z. Such polymer models have recently been applied to many algorithmic

tasks, for example by Jenssen et al. [JKP18], or by Cannon and Perkins [CP19].

However, in contrast to our approach, their proposed algorithms only work

with a speci�c versions of the size-dependent Kotecký-Preiss condition and are

specialized on graph polymer models based on vertex spin systems, as discussed

in the next section.

6.3 Graph polymers from vertex spin systems

Graph polymer models arise from certain graph-theoretical counting problems.

In vertex spin systems, these counting problems are based on spin assignments,

representing di�erent con�gurations of the graph. Formally, polymer models

that are derived from vertex spin systems can be characterized in the following

way.
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I De�nition 6.12 (Polymer model from vertex spin systems). Given an

undirected graphs G = (V ,E), a set of spins [q] = {0, ...,q} and a ground state

дv ∈ [q] for every vertex v ∈ V . A vertex spin polymer model is a polymer model

(C,w, �) with the following properties.

1. Every polymer γ ∈ C is de�ned by some non-empty vertex set γ ⊆ V
such that γ induces a connected subgraph of G, and a spin assignment

φγ : γ → [q] such that φγ (v) , дv for every v ∈ γ .

2. Two polymers γ ,γ ′ ∈ C are incompatible if their graph distance is less

than 2 (i.e., γ � γ ′ if there are v ∈ γ ,u ∈ γ ′ such that v = u, or there is an

edge e ∈ E which is incident to v and u). J

For simplicity, we might as well write γ instead of γ for the set of vertices if

the spin assignment does not matter (e.g., v ∈ γ instead of v ∈ γ ).

In order to apply any of our theorems, we need a polymer clique cover. A

natural choice is the set {Λv | v ∈ V } where Λv = {γ ∈ C | v ∈ γ }. Obviously,

for all Λv and γ ,γ ′ ∈ Λv it holds that γ � γ ′, and there are |V | such cliques,

which is polynomial in the input size. In addition, drawing a polymer clique

uniformly at random is the same as drawing a vertex v ∈ V uniformly and can

be done in polynomial time.

As, we will mainly use Theorem 5.7 and Corollary 5.8 in this section, we also

need a size-function. A simple choice is to de�ne this size on the entire set of

polymers C as |γ | = |γ |. It holds that |γ | ≤ |V | and thus, the size-function has a

polynomial upper bound. An interesting property of this choice is that the size

of a polymer |γ | coincides withmγ , the number cliques which contain γ .

We note that for our choice of size-function and polymer cliques, the polymer

Markov chain is precisely the same as the one proposed in Chen et al. [Che+19].

However, our generalized polymer mixing condition can be seen as a much more

�exible condition to bound the mixing time of that chain and our truncation

condition allows a wider range of weights, for the prize of higher runtime.

For all our applications, the following notion of computational feasibility for

vertex spin polymer models will be required.

I De�nition 6.13 (Computationally feasible vertex spin model). Given

an undirected graph G = (V ,E) with |V | = n. We say a vertex spin polymer

model (C,w, �) onG with spins [q] = {0, ...,q} is computationally feasible if the

following holds:
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1. For every vertex set V ′ ⊆ V with |V ′ | = k and every spin assignment

φ : V ′→ [q] we can decide in time at most O

(
ek

)
whether V ′ and φ form

a valid polymer in C.

2. For every polymer γ ∈ C with |γ | = k we can compute wγ in time at most

O

(
ek

)
. J

Similar feasibility assumptions are commonly used for vertex spin systems,

for example by Chen et al. [Che+19] or Jenssen et al. [JKP18].

To apply the clique truncation condition, we need to bound the time to enu-

merate polymers in a polymer clique up to some size k . For our choice of

size-function and polymer clique cover, the following lemma about subgraph

enumeration will be helpful.

I Lemma 6.14 (Patel and Regts [PR17], Lemma 3.7). Given an undirected

graph G = (V ,E) with bounded degree ∆ and some v ∈ V . There is an algorithm

that enumerates all connected, vertex-induced sugraphs of G that contain v and

have at most k ∈ N>0 vertices in time eO(k ln(∆))
. J

This implies for q + 1 spins that we can enumerate all candidates for polymers

up to size k that contain v in time eO(k ln(∆q))
by enumerating all subgraphs that

contain v up to size k and all possible spin assignments for the vertices of these

subgraphs. If the model is computationally feasible, this ensures that we can

also enumerate Λ≤k
v

in time eO(k ln(∆q))
.

We can now state under which conditions we can give an FPRAS for the

partition function of vertex spin polymer models in a convenient to use form.

I Theorem 6.15. Given an undirected graph G = (V ,E) with |V | = n and

constant degree bound ∆. Let (C,w, �) be a computationally feasible vertex spin

polymer model with spins [q] for some constant q. Assume for every polymer

γ ∈ C it holds that ∑
γ ′�γ

ea |γ
′ |
wγ ′ ≤ ea |γ |

for some constant a ∈ R>0. Further, assume one of the following conditions is

true:

1) For every v ∈ V either Λv = ∅ or there is a polymer γ ∈ Λv such that

|γ | ∈ log(n).
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2) For every v ∈ V it holds that∑
γ ∈Λv

eb |γ |wγ ≤ h(n)

for some constant b ∈ R>0 and h(n) ∈ poly(n).

Then there is an FPRAS for the partition function which has runtime at most(n
ε

)
O(ln(∆q))

. J

Proof of Theorem 6.15. First note that our polymer clique cover {Λv | v ∈ V } has

at most size n. Let v1, ..., vn be some enumeration ofV . For any 1 ≤ j ≤ n we can

draw a polymer clique from Λv1
, ...,Λvj uniformly at random by simply drawing

a vertex from v1, ..., vj uniformly, which can be done e�ciently. By Theorem 6.2,

this means that we can construct an FPRAS with the desired runtime if we can

sample from µ in time

(n
ε

)
O(ln(∆q))

.

To show this, we will use Corollary 5.8 for case 1) and Theorem 5.7 for case 2).

Moreover, the following observations will be useful for both cases.

• we can e�ciently draw a polymer clique uniformly at random by drawing

a vertex uniformly

• we can decide γ ∈ Λv by checking v ∈ γ e�ciently

• we can check γ � γ ′ e�ciently

• |γ | is at most n

Furthermore, we can sample from the truncated clique distribution ξ k
v

by enu-

merating all connected subgraphs that contain v up to size k , enumerating all

possible spin assignments for these subgraphs, checking which of them result in

valid polymers and calculating weights of these polymers. By Lemma 6.14 and

the assumption that the model is computationally feasible, this can be done in

time tv(k) ∈ e
O(k ln(∆q))

.

We start by considering case 1). Because of our observations and the fact that

every non-empty polymer clique contains a polymer of at most logarithmic size,

we can apply Corollary 5.8 to get an e�cient approximate sampling schema for

µ. For the precise runtime, note that the generalized polymer mixing condition

is ful�lled for f (γ ) = ea |γ | and thus 1 ≤ f (γ ) ≤ ean , which yields a mixing
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time of the polymer Markov chain of tP (ε) ∈ O

(
n3 ln(n)2 ln

(
1

ε

) )
. Moreover,

we know that the clique truncation conditions is ful�lled for д(k) = eak and

h(n) ≤ eO(log(n)) ∈ poly(n). Thus, we have д−1(x) = ln(x )
a and by Lemma 5.6, it is

su�cient to truncate at size

k = д−1

(
h(n)tP

( ε
2

)
ε

)
∈ O

(
ln

(n
ε

))
.

This means, approximately sampling from each clique polymer distribution can

be done in time at most

(n
ε

)
O(ln(∆q))

. As we need to do this O

(
n3 ln(n)2 ln

(
1

ε

) )
times to sample ε-approximately from µ, this proves the desired runtime.

We continue with 2). Again, we know that the generalized polymer mixing

condition is ful�lled for f (γ ) = ea |γ | . Moreover, by assumption we have that

the clique truncation condition is ful�lled for д(k) = ebk and some polynomial

function h(n). Together with our previous observations, this already implies

that we can apply Theorem 5.7. For a more precise runtime bound, note that

the mixing time of the polymer chain is the same as for case 1). Moreover, we

have д−1(x) = ln(x )
b , which means that we again truncate at size k ∈ O

(
ln

(n
ε

) )
.

Thus, analogously to case 1) we can ε-approximately sample from µ in time(n
ε

)
O(ln(∆q))

. �

Graph polymer models based on vertex spin systems have recently been

applied to multiple algorithmic problems, such as the Potts model on α-expander

graphs or the hard-core model on bipartite α-expander graphs by Jenssen et

al. [JKP18], and the hard-core model on unbalanced bipartite graphs by Cannon

and Perkins [CP19]. All these algorithmic applications use polymer models for

which the set Λv is either empty or contains a polymer of at most constant size.

This means, that we can apply case 1) of Theorem 6.15 to all of them. Thus, a

su�cient condition for an FPRAS for these applications is that for every γ ∈ C
and some constant a > R>0 it holds that∑

γ ′�γ

ea |γ
′ |
wγ ′ ≤ ea |γ | .

This condition is even less restrictive than the size-dependent Fernández-Procacci

condition, but as convenient to use as the size-dependent Kotecký-Preiss condi-

tion.
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Moreover, our result also holds if the partition function is not a polynomial in

a single parameter, which is especially important for both versions of the hard-

core model. Although the algorithm for vertex spin polymer models proposed by

Jenssen et al. [JKP18] also works without this assumption, their cluster expansion

approach needs the size-dependent Kotecký-Preiss condition to be ful�lled for

a = 1 and д(γ ) ≥ ρ |γ | for some constant ρ ∈ R>0. Note that our condition is

not only more �exible on the left-hand side but also exponentially larger on the

right-hand side.

Besides this result, we can further show some general conditions to remove

the heavy runtime dependency on ∆ and q.

I Theorem 6.16. Given an undirected graph G = (V ,E) with |V | = n and

constant degree bound ∆. Let (C,w, �) be a computationally feasible vertex spin

polymer model with spins [q] for some constant q. Assume for every polymer

γ ∈ C it holds that ∑
γ ′�γ

ea |γ
′ |
wγ ′ ≤ ea |γ |

for some constant a ∈ R>0. Further, assume for every v ∈ V it holds that∑
γ ∈Λv

eb ln(∆q) |γ |
wγ ≤ h(n)

for some b ∈ R>0 and h(n) ∈ poly(n). Then there is an FPRAS for the partition

function with runtime at most

(n
ε

)c0+ c1b
for some absolute constants c0, c1, which

are independent of ∆ and q. J

Proof of Theorem 6.16. Most of the proof of this theorem is similar to the proof

of case 2) of Theorem 6.15. The key ingredient is to note that the ln(∆q) in

the exponent of the runtime comes from the time that is needed sample from

the truncated clique polymer distribution ξ k
v

for some given truncation size k .

However, by changing the function that is used in the clique truncation from

д(|γ |) = eb |γ | to д(|γ |) = eb ln(∆q) |γ |
, we can truncate at a su�ciently small size.

More precisely, note that д−1(x) = ln(x )
b ln(∆q) . As the mixing time of the polymer

chain is the same as in the proof of Theorem 6.15, this results in a truncation
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size of

k ∈ O

(
ln(nε )

b ln(∆q)

)
.

For this truncation size, we can sample from the truncated clique polymer

distribution in time eO(k ln(∆q)) = eO(ln(
n
ε )/b). This can be bounded by

(n
ε

) c1
b

for some absolute constant c1. Further, the runtime of every other step and

the mixing time of the polymer Markov chain are bounded by

(n
ε

)c0
for some

absolute constant c0. Multiplying both yields the desired runtime. �

Again, this theorem can be applied to all algorithmic problems mentioned

above. In the following section, we will illustrate the application of Theorem 6.15

and Theorem 6.16 for the hard-core model on bipartite α-expander graphs.

Hard-core model on bipartite expander graphs

The hard-core model can be seen as a weighted generalization of counting

independent sets.

I De�nition 6.17 (Hard-core model). Given an undirected graphG , let I be

the set of all its independent sets. For a weight λ ∈ R>0, called fugacity, the

hard-core partition function is de�ned as

ZG (λ) =
∑
I ∈I

λ |I | .

The corresponding hard-core Gibbs distribution is a probability distribution on

I such that for every I ∈ I

µG,λ(I ) =
λ |I |

ZG (λ)
. J

The hard-core model is well studied for general bounded degree graphs, and

especially along the positive real axis there are known algorithmic upper bounds

on the fugacity λ which are known to be tight unless NP = RP (see Sly and

Sun [SS12] and Weitz [Wei06]).

Obviously, the hard-core model can be seen as a vertex spin graph polymer

model with spins {0, 1}, ground state дv = 0 for all v ∈ V and every single vertex
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together with spin assignment 1 being a polymer of weight wγ = λ. Usually,

general polymer approaches perform worse than methods that are specialized

on the hard-core model, due to the price of generality.

Aside general bounded-degree graphs, there are di�erent polymer-based al-

gorithms for some graph classes that extend the regime in which the partition

function can be approximated. One such graph class are bipartite α-expander

graphs.

I De�nition 6.18 (Bipartite α -expander graph). Given a bipartite graph

G = (V ,E) with partitionsV = VL ∪VR . In addition, for any set of vertices S ⊆ V
let NG (S) be the neighborhood of S including S itself. For any α ∈ (0, 1) we call

G a bipartite α-expander graph if for every i ∈ {L,R} and S ⊆ Vi with |S | ≤ |Vi |
2

it

holds that |NG (S)| ≥ (1 + α)|S |. J

The way that we will construct the polymer model is as proposed by Jenssen

et al. [JKP18]. For a bipartite α-expander graph G with bonded degree ∆ we

consider the graph G2
, which is the graph with vertices V and an edge between

v,u ∈ V if v,u have at most distance 2 in G. We de�ne the vertex spin polymer

model (CL,wL, �) for graph G2
and spins {0, 1} by:

• дv = 0 if v ∈ VL and дu = 1 if u ∈ VR

• every γ ∈ CL
is de�ned by a set of vertices γ ⊆ VL with |γ | ≤ |VL |

2
that

induces a connected subgraph in G2
and spin assignment φγ (v) = 1 for

every v ∈ γ

• w
L
γ =

λ |γ |

(1+λ)|NG (γ )|
where NG (γ ) is the neighborhood of γ in G

Similarly we can de�ne (CR ,wR , �) by swapping the ground states and construct-

ing the polymers from subset of vertices from VR . Let for i ∈ {L,R} denote µi
and Zi the Gibbs distribution and the partition function of (Ci ,wi , �). Based on

these two polymer models, Jenssen et al. [JKP18] proved the following statement.

I Lemma 6.19 (Jenssen et al. [JKP18], Lemma 19). Given a bipartite α-

expander graph G = (V ,E) with |V | = n and vertex partitions V = VL ∪ VR .

Assume that λ ≥ e
11

α and set

Ẑ = (1 + λ) |VL |ZR + (1 + λ)
|VR |ZL .
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For the hard-core partition function ZG (λ) it holds that

(1 − e−n)ZG (λ) ≤ Ẑ ≤ (1 + e−n)ZG (λ). J

This means, that a su�ciently good approximation of ZL and ZR yields also a

good approximation for the hard-core partition function on G.

As we aim for applying Theorem 6.15 in order to bound the weights for which

our approach gives us an FPRAS, it will be useful to have a bound on the number

of polymers that are in a given polymer clique. Such an upper bound can be

derived from the number of vertex-induced subgraphs of G2
that contain a

certain vertex v multiplied with the number of possible spin assignments. For the

number of vertex-induced subgraphs it is common to use the following lemma.

I Lemma 6.20 (Borgs et al. [Bor+10], Lemma 2.1). For an undirected graph

G = (V ,E) with bounded degree ∆ and any v ∈ V , the number of vertex-induced

sugraphs that contain v and have at most k ∈ N>0 vertices can be upper bounded

by
(e∆)k−1

2
. J

To investigate for which regime of λ we can do such an approximation, we

will use similar arguments as Jenssen et al. [JKP18]. However, instead of using

the size-dependent Kotecký-Preiss condition to prove that cluster expansion

can be applied, we will justify our bounds on λ with Theorem 6.15. In addition,

we will get a randomized approximation, as our approximations are based on

sampling from µL and µR . For handling the error probability, we will use similar

arguments as Chen et al. [Che+19].

I Proposition 6.21. Given a bipartite α-expander graph G(V ,E) with |V | = n
and degree bounded by some constant ∆. For λ ≥ max{( 9

2
∆2)

1

α , e
11

α } there is an

FPRAS for ZG (λ) with runtime in (nε )
O(ln(∆))

. J

Proof of Proposition 6.21. First, note that we actually only have to consider cases

where ε ∈ ω(e−n) because for ε ∈ O(e−n) we can simply brute-force all indepen-

dent sets. There are at most 2
n

such sets, which is obviously polynomial in
1

e−n .

Thus, we focus on the case ε ≥ 4e−n .

Knowing this, we can apply Lemma 6.19, which tells us that ZG (λ) can be e−n

approximated by ZL and ZR . Let AL and AR be
ε
4
-approximations of ZL and ZR ,

each with probability of at least

√
3

2
, and set Â to be the resulting approximation
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of Ẑ . Now we have with probability at least 1 − ε that(
1 −

ε

4

)
Ẑ ≤ Â ≤

(
1 +

ε

4

)
Ẑ .

This directly gives us

(1 − ε)ZG (λ) ≤
(
1 −

ε

4

)
(1 − e−n)ZG (λ) ≤

(
1 −

ε

4

)
Ẑ ≤ Â

and similarly

Â ≤
(
1 +

ε

4

)
Ẑ ≤

(
1 +

ε

4

)(1 + e−n
)
ZG (λ) ≤ (1 + ε)ZG (λ).

Thus, Â is an ε-approximation of ZG (λ) with probability at least
3

4
.

Let i ∈ {L,R}. We now know that it is su�cient if Ai is an
ε
4
-approximation of

Zi with probability at least

√
3

2
. To do so, we take the median of O

(
ln

(
2√
3

))
= O(1)

independent trials with constant failure probability at most
1

4
.

To obtain each of those independent
ε
4
-approximations of Zi for i ∈ {L,R}

with failure probability at most
1

4
, we can apply Theorem 6.15.

First, note that the degree of G2
is bounded by ∆2

and that we only need two

spins, thus q = 1. Further, the polymer model is computationally feasible as

calculating weights and deciding whether a subgraph is a polymer can be done

e�ciently with respect to the number of vertices in the subgraph. Every polymer

clique Λv is empty if v < Vi or otherwise contains a polymer of constant size,

namely γ = {v} with φγ (v) = 1. Thus, we can apply case 1) of Theorem 6.15.

For this, it remains to show that for the stated range of λ the polymer model

(Ci ,wi , �) ful�lls ∑
γ ′�γ

ea |γ
′ |
w
i
γ ′ ≤ ea |γ |

for some a > 0 and every γ ∈ Ci . We can upper bound the left-hand side by∑
γ ′�γ

ea |γ
′ |
w
i
γ ′ ≤

∑
v∈NG2 (γ )

∑
γ ′∈Λv

ea |γ
′ |
w
i
γ ′ .

Now, observe that if G is a bipartite α-expander we can bound each polymer’s
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weight by

w
i
γ ′ =

λ |γ
′ |

(1 + λ) |NG (γ ′) |
≤

1

λα |γ |
.

Moreover, for each v ∈ V we can apply Lemma 6.20 to get∑
γ ′∈Λv

ea |γ
′ |
w
i
γ ′ ≤

∑
k≥1

∑
γ ′∈Λv

|γ ′ |=k

ea |γ
′ |
w
i
γ ′

≤
∑
k≥1

(e∆2)k−1

2

eak

λαk

≤
1

2e∆2

∑
k≥1

(
e1+a∆2

λα

)k
.

In addition, note that for every γ ∈ Ci we have that |NG2(γ )| ≤ ∆2 |(γ )| = ∆2 |(γ )|.
This leads to the following upper bound∑

γ ′�γ

ea |γ
′ |
w
i
γ ′ ≤

|γ |

2e

∑
k≥1

(
e1+a∆2

λα

)k
.

Now, we set a = 1

4
and λ ≥ ( 9

2
∆2)

1

α . This gives us

∑
γ ′∈Λv

ea |γ
′ |
w
i
γ ′ ≤

|γ |

2e

∑
k≥1

(
2e1+

1

4

9

)k
=
|γ |

2e

2e1+
1

4

9 − 2e1+
1

4

≤ e
1

4
|γ | .

This proves that we can apply Theorem 6.15 and because q = 1 for this polymer

mode, we get an FPRAS with the desired runtime. �

We would like to add an additional remark on our bound. Note that the last

inequality that was used to prove that we can apply Theorem 6.15, namely

|γ |

2e

∑
k≥1

(
2e1+

1

4

9

)k
≤ e

1

4
|γ |
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is tightest for |γ | = 4. In general, for any a > 0 the worst case is |γ | = 1

a .

Knowing this, we can even derive a slightly better but more complex bound

λ ≥ λ∆,α ≈ (4.4278 ·∆
2)

1

α . However, for simplicity of the proposition, we decide

to state a slightly weaker bound.

By applying a modi�ed version of the cluster expansion algorithm of Helmuth

et al. [HPR18], together with a special version of the Kotecký-Preiss condition,

Jenssen et al. [JKP18] proved a bound of λ ≥ max{(2e3∆4)
1

α , e
11

α } for the same

asymptotic runtime. However, their estimates of the subgraph counts were quite

rough. By using Lemma 6.20 with their algorithm, a bound of λ ≥
( (
e + 1

2

)
e2∆2

) 1

α

can be derived. Still, our approach improves their result by a factor of more than

5

1

α .

The reason that Theorem 6.15 only performs better by a constant factor, is

that the existence of polymers with constant size reduces the worst case of the

right-hand site of the condition∑
γ �γ ′

ea |γ
′ |
wγ ′ ≤ ea |γ |

to a constant. Although the same also holds for the size-dependent Kotecký-

Preiss condition, the theoretical advantage of our approach vanishes. However,

note that our condition gets more powerful compared to the size-dependent

Kotecký-Preiss condition the larger the smallest polymers in the model are.

Especially, if for every polymer clique Λv it holds that the smallest polymer

γ ∈ Λv ful�lls |γ | ∈ Θ(log(n)), then the right-hand site of our condition in is in

Θ(poly(n)), whereas the right-hand site of the size-dependent Kotecký-Preiss

condition is inΘ(log(n)).

Besides this result, Chen et al. [Che+19] proposed a randomized approach for

approximating the hard-core partition function for λ ≥ max{(3∆)
6

α , e
11

α } in time

O

(
(nε )

2
log(nε )

3
)
. A comparison is hard as their approach aims at an improved

runtime but needs much more restrictive conditions for doing so. However, the

following proposition shows that our approach is capable to give results in an

interesting regime in between both trade-o�s.
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I Proposition 6.22. Given a bipartite α-expander graph G(V ,E) with |V | = n
and degree bounded by some ∆. If for some constant d > 0 we have

λ ≥ max

{
(3∆2+d )

1

α ,

(
9

2

∆2

) 1

α

, e
11

α

}
,

then there is an FPRAS for ZG (λ) with runtime in (nε )
c0+

c
1

d for some absolute

constants c0, c1, independent of ∆. J

Proof of Proposition 6.22. Most of the arguments are similar to the proof of Propo-

sition 6.21, except that we apply Theorem 6.16 this time. First, note that λ ≥ e
11

α .

Thus, we can again apply Lemma 6.19. Now, let i ∈ {L,R}. Because λ ≥ ( 9
2
∆2)

1

α ,

we know that for all polymers γ ∈ Ci it holds that∑
γ ′�γ

ea |γ
′ |
w
i
γ ′ ≤ ea |γ |

for a = 1

4
.

Note that in our case q = 1, as we have only two spins and that the degree of

G2
is bounded by ∆2

. It remains to prove that for all v ∈ V it holds that∑
γ ∈Λv

eb ln(∆2q) |γ | ≤
∑
γ ∈Λv

e2b ln(∆) |γ | ≤ h(n)

for some b ∈ R>0 and h(n) ∈ poly(n). We do this by setting b = d
2
> 0. Because

λ ≥ (3∆2+d )
1

α , it now holds for every v ∈ V and i ∈ {L,R} that∑
γ ∈Λv

ed ln(∆) |γ |
w
i
γ ≤

∑
k≥1

(e∆2)k−1

2

ed ln(∆)k 1

λαk

≤
1

2e∆2

∑
k≥1

(
e∆2+d

λα

)k
≤

1

2e∆2

∑
k≥1

(e
3

)k
=

1

2e∆2

e

3 − e
∈ Θ(1).
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Thus, we can apply Theorem 6.16 and get an FPRAS with the desired runtime. �

Naturally speaking, this means that by making the bound on λ worse by a

factor of only ∆
d
α for any constant d > 0, the heavy runtime dependency on ∆

can be removed.

6.4 Graph polymers from edge spin systems

A di�erent type of graph polymer models are those that arise from edge spin

systems. Formally, polymer models from edge spin systems can be characterized

in the following way.

I De�nition 6.23 (Polymer models from edge spin systems). Given an

undirected graph G = (V ,E), a set of spins [q] = {0, ...,q} and a ground state

дe ∈ [q] for every edge e ∈ E. An edge spin polymer model is a polymer model

(C,w, �) with the following properties.

1. Ever polymer γ ∈ C is de�ned by some non-empty set of edges γ ⊆ E that

induces a connected subgraph in G, and a spin assignment φγ : γ → [q]
such that for every e ∈ γ it holds that φγ (e) , дe .

2. Two polymers γ ,γ ′ ∈ C are incompatible if their induced subgraphs share

a vertex (i.e., γ � γ ′ if there are e ∈ γ , f ∈ γ ′ such that there is a vertex

v ∈ V which is incident to e and f ). J

For simplicity, we might write γ to denote the edge set γ if the spin assignment

is not important (e.g., e ∈ γ instead of e ∈ γ ). Furthermore, we will also write

v ∈ γ for some vertex v ∈ V if there is an edge e ∈ γ which is incident to v.

Again, we have to argue that such polymer models can be covered with a

polynomial number of polymer cliques. As for the vertex spin systems, we

choose {Λv | v ∈ V } with Λv = {γ ∈ C | v ∈ γ } as polymer clique cover. Thus,

drawing a polymer clique uniformly at random again boils down to choosing a

vertex uniformly at random. In addition, whenever we need a size-function we

will choose the number of edges in a polymer |γ | = |γ |. Note that in contrast to

our choice for vertex spin polymer models, this time the size of a polymer is not

equal to the number of cliques which contain it (i.e., |γ | ,mγ ).

For all our applications, the following notion of computational feasibility for

edge spin polymer models will be required.
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I De�nition 6.24 (Computationally feasible edge spin model). Given an

undirected graph G = (V ,E) with |V | = n. We say an edge spin polymer

model (C,w, �) onG with spins [q] = {0, ...,q} is computationally feasible if the

following holds:

1. For every edge set E ′ ⊆ E with |E ′ | = k and every spin assignment

φ : E ′→ [q] we can decide in time at most O

(
ek

)
whether E ′ and φ form

a valid polymer in C.

2. For every polymer γ ∈ C with |γ | = k we can compute wγ in time at most

O

(
ek

)
. J

This is very similar to our de�nition of computational feasibility for vertex

spin systems.

To apply our sampling schema, we will need the following lemma about the

enumeration of edge induced subgraphs.

I Lemma 6.25 (Casel et al. [Cas+19], part of Theorem 1.1). Given an undi-

rected graph G = (V ,E) with bounded degree ∆ and some v ∈ V . There is

an algorithm that enumerates all connected, edge-induced sugraphs of G that

contain v and have at most k ∈ N>0 edges in time eO(k ln(∆))
. J

As for the vertex spin polymer models, this implies that we can enumerate all

candidates for Λ≤k
v

in time at most eO(k ln(∆q))
by enumerating all edge-induced

subgraphs that contain v up to size k and all spin assignments for their edges.

With this, we can use Theorem 5.7 and Corollary 5.8 to prove the following

theorem about the existence of an FPRAS for the partition function of edge spin

polymer models.

I Theorem 6.26. Given an undirected graph G = (V ,E) with |V | = n and

constant degree bound ∆. Let (C,w, �) be a computationally feasible edge spin

polymer model with spins [q] for some constant q. Assume for every polymer

γ ∈ C it holds that ∑
γ ′�γ

ea |γ
′ |
wγ ′ ≤ ea |γ |

for some constant a ∈ R>0. Further, assume one of the following conditions is

true:
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1) For every v ∈ V either Λv = ∅ or there is a polymer γ ∈ Λv such that

|γ | ∈ log(n).

2) For every v ∈ V it holds that∑
γ ∈Λv

eb |γ |wγ ≤ h(n)

for some constant b ∈ R>0 and h(n) ∈ poly(n).

Then there is an FPRAS for the partition function which has runtime at most(n
ε

)
O(ln(∆q))

. J

We omit the proof, because for our choice of polymer clique cover and due to

Lemma 6.25, it is identical to the proof of Theorem 6.15.

Just as for the vertex spin polymer models, we can also state a version without

runtime dependence on ln(∆q).

I Theorem 6.27. Given an undirected graph G = (V ,E) with |V | = n and

constant degree bound ∆. Let (C,w, �) be a computationally feasible edge spin

polymer model with spins [q] for some constant q. Assume for every polymer

γ ∈ C it holds that ∑
γ ′�γ

ea |γ
′ |
wγ ′ ≤ ea |γ |

for some constant a ∈ R>0. Further, assume for every v ∈ V it holds that∑
γ ∈Λv

eb ln(∆q) |γ |
wγ ≤ h(n)

for some b ∈ R>0 and h(n) ∈ poly(n). Then there is an FPRAS for the partition

function with runtime at most

(n
ε

)c0+ c1b
for some absolute constants c0, c1, which

are independent of ∆ and q. J

Again, the proof is identical to the proof of Theorem 6.16 and thus omitted.

Edge spin polymer models as described above have for example been used

by Casel et al. [Cas+19] in order to approximate Holant polynomials. They

applied this modeling to problems which naturally can be encoded in this Holant

framework and used the size-dependent Kotecký-Preiss condition to give bounds
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for zero-free regions in the complex plain, which are closely related to bounds

for e�cient approximation via cluster expansion. We will investigate approxima-

tion bounds using the same modeling but with our approach instead of cluster

expansion. Opposed to Casel et al. [Cas+19], we are again restricted to posi-

tive real weights for our polymer models, as we start from sampling the Gibbs

distribution.

Perfect matching polynomial

The question of the computational complexity of counting perfect matchings

remains an unsolved problem in theoretical computer science, related to many

approximation problems. Besides counting perfect matchings, attempts have

been made to approximate other statistics over the set of all perfect matching.

One of them is the so called perfect matching polynomial.

I De�nition 6.28 (Perfect matching polynomial). Given an undirected

graph G = (V ,E) with a non-empty set of perfect matchings M and some

�xed M0 ∈ M. The perfect matching polynomial for a weight z ∈ R>0 is de�ned

as

PG,M0
(z) =

∑
M ∈M

z |M0⊕M |,

where M0 ⊕M denotes the symmetric di�erence of the edge sets of both perfect

matchings. J

Similar to Casel et al. [Cas+19], we will �rst translate this problem into a

polymer model. Note that the case M = M0 contributes 1 to the polynomial.

In addition, for any perfect matching M ∈ M with M , M0, the symmetric

di�erence between M and M0 can be decomposed into vertex-disjoint cycles,

alternating between matching and non-matching edges with respect to M0.

Moreover, any combination of vertex-disjoint alternating cycles corresponds to

a perfect matching, di�erent from M0.

Based on these observations, we de�ne our polymer model for a given graph

G = (V ,E) and a perfect matching M0. We use the spins {0, 1} and set дe = 0

for every e ∈ E. Our polymers C are all alternating cycles in G with respect

to M0, together with spin 1 for every e ∈ γ . In addition, we set the weight

wγ = z |γ | = z |γ | for every polymer γ ∈ C. According to our de�nition of � for
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edge spin polymer models, we have a one to one correspondence between the

set of polymer families F and the set of perfect matchingM. Let ΓM ∈ F be

the polymer family that represents M ∈ M. Obviously, we have ΓM0
= ∅ and

for all M , M0 it holds that

z |M0⊕M | =
∏
γ ∈ΓM

zγ =
∏
γ ∈ΓM

wγ .

Thus, we get

ZG,M0
(z) =

∑
ΓM ∈F

∏
γ ∈ΓM

wγ =
∑
M ∈M

z |M0⊕M | = PG,M0
(z).

We can now apply our approach for approximating the partition function

ZG,M0
(z) as an approximation of PG,M0

(z). In order to do so, the following lemma

will be useful.

I Lemma 6.29 (Casel et al. [Cas+19], part of Theorem 7.7). Given an undi-

rected graph G = (V ,E) with a perfect matching M0. For every edge e ∈ E and

every k ≥ 2, there are at most (∆ − 1)k alternating cycles of length 2k with

respect to M0. In addition, for every alternating cycle with length l , there are at

most
1

2
l(∆− 1)k alternating cycles of length 2k that share at least one vertex. J

With this bound, we can prove the following result.

I Proposition 6.30. Given an undirected graphs G = (V ,E) with bounded

degree ∆ and |V | = n. In addition, let M0 be some perfect matching of G. For

z ≤ 1√
3(∆−1)

there is an FPRAS for the perfect matching polynomial PG,M0
(z)

with runtime in

(n
ε

)
O(ln(∆))

. J

Proof of Proposition 6.30. We want to apply Theorem 6.26. Note that the polymer

model is computationally feasible as calculating weights and identifying which

subgraphs are valid polymers can be done e�ciently.

First, we prove that for every γ ∈ C and some constant a ∈ R>0 it holds that∑
γ ′�γ

ea |γ
′ |
wγ ′ ≤ ea |γ

′ | .

For this, we set a = 1

5
. Note that every alternating cycle has an even length,

which implies that there are only polymers with even size. By application of
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Lemma 6.29 we get the following bound∑
γ ′�γ

e
1

5
|γ ′ |

wγ ′ ≤
1

2

|γ |
∑
k≥1

(∆ − 1)kz2ke
2

5
k =

1

2

|γ |
∑
k≥1

(
(∆ − 1)z2e

2

5

)k
.

By our choice of z, we can further see that

∑
k≥1

(
(∆ − 1)z2e

2

5

)k
=

∑
k≥1

(
e

2

5

3

)k
=

e
2

5

3 − e
2

5

< 1

and so we have ∑
γ ′�γ

e
1

5
|γ ′ |

wγ ′ <
1

2

|γ | ≤ e
1

5
|γ | .

For the given polymer model and our choice of the polymer clique cover, we

can not assume that for every non-empty polymer clique Λv contains a polymer

of logarithmic size. Thus, we need to apply case 2) of Theorem 6.26, meaning

that we also have to show for every v ∈ V that∑
γ ∈Λv

eb |γ |wγ ≤ h(n)

for some constant b ∈ R>0 and h(n) ∈ poly(n). A simple way to ensure this is to

set b = a = 1

5
. Now, for any vertex v ∈ V and any polymer γ ∈ Λv we have that∑

γ ′∈Λv

e
1

5
|γ ′ |

wγ ′ ≤
∑
γ ′�γ

e
1

5
|γ ′ |

wγ ′ <
1

2

|γ |.

The last inequality follows directly from our calculations above.

This shows that we can apply Theorem 6.26 and because q = 1 it concludes

our proof. �

We want to add one more comment at this point. The bound on z that we

used in Proposition 6.30 is actually not optimal for our approach. When looking
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at the proof, we see that the main restriction is imposed by the condition

1

2

|γ |
∑
k≥1

(
(∆ − 1)z2e

2

5

)k
≤ e

1

5
|γ | .

We ensured this by setting z such that∑
k≥1

(
(∆ − 1)z2e

2

5

)k
< 1.

This is actually more restrictive than necessary. By observing that |γ | also only

takes even positive integers, some calculations show that

z ≤
1√

3+e6/5
e4/5 (∆ − 1)

≈
1√

2.8399(∆ − 1)

would also be su�cient. Further improvements can be achieved combining this

with an optimized value for a. However, for simplicity of the proposition, we

decided to state a slightly weaker version.

For the complex case Theorem 7.7 of Casel et al. [Cas+19] states a convergence

radius of the cluster expansion of approximately δ = 1√
4.85718(∆−1)

, leading to an

approximation for any constant |z | < δ . Obviously, Proposition 6.30 suggest that

a randomized approximation can be done for slightly larger values of z along

the positive real axis.

Besides this improvement of parameter bounds, the following result is inter-

esting in terms of runtime.

I Proposition 6.31. Given an undirected graphs G = (V ,E) with bounded

degree ∆ ≥ 3 and |V | = n. In addition, let M0 be some perfect matching of G. If

for some constant d > 0 we have

z ≤ min

{
1√

2(∆ − 1)1+d
,

1√
3(∆ − 1)

}
,

then there is an FPRAS for the perfect matching polynomial PG,M0
(z) with

runtime in

(n
ε

)c0+ c1a
for some absolute constants c0, c1 independent of ∆. J

Proof of Proposition 6.31. We will prove this by applying Theorem 6.27. First,
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note that for z ≤ 1√
3(∆−1)

we know from the proof of Proposition 6.30 that for

every γ ∈ C ∑
γ ′�γ

e
1

5
|γ ′ |

wγ ′ ≤ e
1

5
|γ | .

Further, because q = 1 and ∆ ≥ 3, we know that for every v ∈ V it holds that∑
γ ∈Λv

eb ln(∆q) |γ |
wγ ≤

∑
γ ∈Λv

e2b ln(∆−1) |γ |
wγ .

We set b = d
2
> 0, and because z ≤ 1√

2(∆−1)a+1
we get that

∑
γ ∈Λv

ed ln(∆−1) |γ |
wγ ≤

∑
k≥1

(
(∆ − 1)1+dz2

)k
≤
(∆ − 1)1+dz2

1 − (∆ − 1)1+dz2

≤

1

2

1 − 1

2

= 1.

Thus, we can apply Theorem 6.27, which yields the desired runtime and concludes

our proof. �

Again, with only slightly worse bounds on the parameter, namely by a factor

of roughly (∆ − 1)
d
2 , we can remove the runtime dependency on ∆.
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In this thesis, we introduced a framework to use Markov chains for sampling

from the Gibbs distribution and approximating the partition function of abstract

polymer models. The concept of polymer cliques, which we introduced for this,

can be seen as the core property that existing chains for vertex spin systems by

Chen et al. [Che+19] or edge spin systems by Casel et al. [Cas+19] implicitly

used.

Moreover, we introduced the generalized polymer mixing condition as a way

for bounding the mixing time of our chain. It shows interesting relations between

commonly known conditions for convergence of the cluster expansion and the

mixing time of the polymer Markov chain, as for example stated in Proposition 6.6.

Namely, all conditions that are given by Fernández and Procacci [FP07] can be

shown to imply the generalized polymer mixing condition. This gives evidence

that for positive real valued polymer models the generalized polymer mixing

condition tends to be a less restrictive condition than convergence of the cluster

expansion. Although we were not able to prove such a statement in general, we

see this as an interesting problem for future research and such a relation might

be of separate theoretical interest.

When turning our Markov chain into an e�cient sampling schema, we faced

the problem that it is not obvious how to do each transition of the Markov

chain e�ciently. The reason is that it involves drawing from the clique polymer

distribution. We doubt that there are general conditions, under which this can

be done e�ciently, as detailed knowledge about the structure of the polymers

would be needed.

To give a more general setting under which our polymer Markov chain can

be used to construct an e�cient sampler for the Gibbs distribution, we relaxed

the condition of exact sampling from the clique polymer distribution to e�cient

approximate sampling from each of them. The technique that we used for

this can be seen as a general way to use Markov chains with transition errors

for sampling. We emphasize that this might be of separate interest for other

algorithmic applications.
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Further we proposed truncation and enumeration of each polymer clique

as one way for approximate sampling from the clique polymer distribution.

Although this seems similar to what is done in cluster expansion algorithms, our

arguments for truncation directly involve the polymer model instead of using

absolute convergence of some in�nite series. Moreover, the resulting clique

truncation condition only has to ensure that we can bound the resulting error for

each polymer clique, as the combinatorial complexity of constructing polymer

families is already handled by the polymer Markov chain.

This decoupling of conditions for truncation and conditions for constructing

families of polymers is of special interest for the algorithmic application of

vertex and edge spin polymer models. Here, the choice of truncation size heavily

in�uences the runtime of approximation algorithms.

We showed that by carefully choosing the function that is used for the clique

truncation condition, the exponential runtime dependency on ln(∆) can be

removed for only slightly worse bounds on the weights. This can be seen as

a trade-o� between fast Markov chain approaches as proposed by Chen et

al. [Che+19] and slow cluster expansion approaches as introduced by Helmuth et

al. [HPR18]. We would like to point out that such improvements are not limited

to the examples that we have given, but rather work for most applications of

graph polymer models.

Although truncation imposes an additional condition beside the generalized

polymer mixing condition to do e�cient sampling, constructions like in the proof

of Proposition 6.8 show that such additional conditions are necessary unless NP
= RP. More such examples would be interesting to get a better characterization

under which conditions e�cient approximation algorithms can be expected.

The reader might have noticed that we used Theorem 5.7 and Corollary 5.8,

which both rely on truncation, in all applications. This rises the question why

we stated Theorem 3.13 and Theorem 4.5 as separate theorems in the �rst place.

Typical applications for Theorem 3.13, namely exact sampling from each

clique polymer distribution, are for instance polymer models with a number

of polymers that is polynomial in the input size. In such cases, each polymer

can be seen as its own clique, making exact sampling from each clique polymer

distribution a trivial task. Examples for this are the hard-core model on general

bounded degree graphs or the monomer dimer model (i.e., counting and sampling

weighted matchings).
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In contrast to that, it is less obvious for which algorithmic problems Theo-

rem 4.5 can be applied without relying on truncation and enumeration. Although

one can think of other methods, like Markov chains, to approximately sample

from each polymer clique, such Markov chains need a more detailed structural

understanding of the polymers (e.g., how can we get from one polymer in a

clique to another polymer from the same clique). As such structural properties

heavily depend on the concrete polymer model, we consider this question to

be outside the scope of this thesis. However, we want to emphasise that such

alternative approaches could especially lead to better runtime results, whenever

there is a more e�cient sampling method than plain enumeration. Thus, we

think that Theorem 4.5 has its own right for future research.

Finally, we would like to add some notes regarding implications of our results

for other lines of research, which we have not discussed in this thesis. For

example Chen et al. [Che+19] studied the mixing time of restricted Glauber

dynamics. They showed that if their Markov chain for vertex spin polymer

models is rapidly mixing and polymers are of at most logarithmic size, those

restricted Glauber dynamics are rapidly mixing as well. As our polymer Markov

chain is a generalization of their chain, it would be interesting to see how

generalized polymer mixing condition and clique truncation condition can be

used to extend the region of rapid mixing of those restricted Glauber dynamics.
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