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ABSTRACT

Software Repositories contain knowledge on how software engi-

neering teams work, communicate, and collaborate. It can be used

to develop a data-informed view of a team’s development process,

which in turn can be employed for process improvement initia-

tives. In modern, Agile development methods, process improve-

ment takes place in Retrospectivemeetings, in which the last devel-

opment iteration is discussed. However, previously proposed activ-

ities that take place in these meetings often do not rely on project

data, instead depending solely on the perceptions of team mem-

bers.We propose new Retrospective activities, based onmining the

software repositories of individual teams, to complement existing

approaches with more objective, data-informed process views.
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1 INTRODUCTION

Retrospective meetings are commonly held at the end of a project

to review the pastwork and to identify improvement opportunities.

The practice of Retrospectives was embraced by the Agile commu-

nity, which focuses on light-weight software development meth-

ods, iterations, and feedback [6]. Instead of waiting until the end

of a project, Agile practitioners began running Retrospective meet-

ings more frequently, e.g. at the end of Scrum Sprints [9]. Today,

regular Retrospective meetings are a popular practice in profes-

sional software engineering [16].
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2 DATA-INFORMED RETRO ACTIVITIES

Team activities for Retrospectives have been proposed to struc-

ture meetings and to encourage the sharing of ideas [5]. Derby

and Larsen defined five consecutive phases for Retrospectives in

software engineering: set the stage, gather data, generate insights,

decide what to do, and close [5]. More recently, Baldauf introduced

the Retromat, a book [2] and online tool, which includes most of

the previously proposed exercises in a structured format. Most pro-

posed Retrospective exercises focus on gathering the perceptions

and experiences of teammembers and extracting improvement op-

portunities from them. Another view of the project reality is avail-

able through the artifacts that are produced by software develop-

ers in the course of their daily work [13]. Table 1 lists an extract of

popular tools and the data that can be extracted from them. This

data is useful for process improvement as it provides evidence for

project problems, e.g. when tests fail [20]. Large-scale analysis of

this valuable project data is the focus of theMining Software Repos-

itories (MSR) research field [8]. However, their approaches to ex-

tract insights from vast collections of software repositories have

not yet been applied to software process improvement in small,

Agile teams. We propose employing the software project data of

development teams, to enable an additional, data-informed view

of the executed process in Retrospective meetings. Our vision in-

cludes new activities for the gather data phase, based on software

repository analyses.

In the following, we present two use cases: (i)Action ItemDiscov-

ery, i.e. discovering opportunities for improvement and (ii) Progress

Check, i.e. assessing the team’s progress on improvement actions.

2.1 Action Item Discovery

The outcome of a Retrospective is a list of “action items” [5], that

the team will work on in the next development iteration. Of the

many proposed activities to gather data, only extremely few have a

connection to project data [2]. We propose using data-driven activ-

ities to discover new action items. Assessments of project data can

be drawn from measurements designed for Agile software engi-

neering best practices. Examples include code coverage over time, [4],

the regularity of commits to the VCS [12] or the percentage of sto-

ries implemented using Pair Programming [4].

ProposedActivity: HealthCheck. TheRetrospective exercise is based

on the established software development best practices of a team’s

organization, with the goal of revealing violations of these prac-

tices in the project data. To gather data, project data measurements

concerning a practice should be collected. For example, for the

“commit early, commit often” principle [1], this can include the

average amount of commits per developer or the average time be-

tween commits during core working hours. In the generate insights
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Table 1: Extract of types of tools that produce project data which can be employed in data-informed Retrospective activities.

Tool Type Function Examples of Extractable Data Points Tool Example

Version Control Track code changes, communicate rationales [15] Code diffs, committer details, timestamps git

Issue Tracker Manage detailed information on work items [14] Developer assignments, status updates Jira

Software Tests Present the status of current software builds [3] Integration logs, test run logs, build status Jenkins

Status Monitor Inform/alert regarding availability of systems [7] Accumulated uptime, downtime events Nagios

Code Review Share knowledge, gather critique of peers [19] Time to completion, reviewer details, verdicts Gerrit

Code Analysis Provide automated feedback on code quality [18] Code coverage results, coding style checks Lint

phase, the team members can inspect the results and note whether

they are outside the expected range, i.e. when adhering to the rule.

The team members can compare their interpretations of analysis

results, debate rationales for their observations and can find a con-

sensus on action items for the next iteration, e.g. to commit their

work to the VCS after each finished work item. In the case that

results are considered to be flawed or false positives, the measure-

ment parameters can be fine-tuned for the next iteration.

2.2 Progress Check

Without a method to gain insight into the effectiveness of Ret-

rospectives and few tangible results, an organization might find

it hard to justify the time and expense of performing Retrospec-

tives [10]. Project artifact measurements, based on Retrospective

action items, are one avenue to provide these quantifiable improve-

ment results. Once a measurement is defined for a given action

item, the results for the current (without the change) and the next

iteration (with the enacted change) can be compared.

Proposed Activity: Remedy Appraisal. Suppose that in a previous

Retrospective the team identified the issue of a single person com-

mitting most of the team’s code changes, which slowed down the

team. As an action item, all team members were trained in VCS us-

age. To track progress, the team can decide to employ the number

of unique contributors to their code repository as a measurement.

In the following Retrospective, the team appraises the effect of the

remedy. The VCS can provide evidence of whether the training

showed effects and whether more teammembers contributed code,

by rerunning the previously defined measurements and compar-

ing results. Depending on whether the results improve, i.e. show

a higher contributor count, the action item can be considered re-

solved or can be discussed further.

3 CONCLUSION

Modern software engineers depend on digital collaboration, com-

munication and development tools. Integrations between these tools

are becoming more prevalent. An increasing amount of informa-

tion on developers’ interactions and behaviors is available in project

artifacts, which allows improving cooperative and development

processes [17]. However, these concepts have not yet fully estab-

lished themselves in the domain of Agile process improvement. We

propose new Retrospective activities based on project data mea-

surements both for discovering process improvement opportuni-

ties and progress inspection. Our proposal represents initial steps

in integrating the promises of the field of Mining Software Repos-

itories into Agile process improvement approaches. Future work

includes research on automating data-informed insights, such as

through chatbots supporting Agile Retrospectives [11].
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