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ABSTRACT
Modern virtual machines for object-oriented languages such as Java
HotSpot, Javascript V8 or Python PyPy reach high performance
through just-in-time compilation techniques, involving on-the-�y
optimization and deoptimization of the executed code. These tech-
niques require a warm-up time for the virtual machine to collect
information about the code it executes to be able to generate highly
optimized code. This warm-up time required before reaching peak
performance can be considerable and problematic. In this paper,
we propose an approach, Sista (Speculative Inlining SmallTalk Ar-
chitecture) to persist optimized code in a platform-independent
representation as part of a snapshot. After explaining the overall
approach, we show on a large set of benchmarks that the Sista
virtual machine can reach peak performance almost immediately
after start-up when using a snapshot where optimized code was
persisted.

CCS CONCEPTS
•Software and its engineering → Just-in-time compilers;
Runtime environments; Object oriented languages; Inter-
preters;

KEYWORDS
Language virtual machine, Just-in-time compilation, Runtime com-
piler, Object-oriented language

1 INTRODUCTION
Most object-oriented languages, such as Java or Javascript run on
top of a virtual machine (VM). High performance VMs, such as
Java HotSpot or current Javascript VMs achieve high performance
through just-in-time compilation techniques: once the VM has
detected that a portion of code is frequently used, it recompiles
it on-the-�y with speculative optimizations based on previous
runs of the code. If usage patterns change and the code is not
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executed as previously speculated anymore, the VM dynamically
deoptimizes the execution stack and resumes execution with the
unoptimized code. As speculative optimization relies on previous
runs to speculate one way or another, the VM needs a warm-up
time to reach peak performance. Depending on the virtual machine
speci�cations and the application run, the warm-up time can be
signi�cant.

Snapshots. To avoid this warm-up time, this paper introduces
an architecture to save a platform-independent version of the
optimized code as part of a snapshot. Snapshots are avail-
able in multiple object-oriented languages such as Smalltalk
[Goldberg and Robson, 1983] and later Dart [Annamalai, 2013].
Snapshots allow the program to save the heap in a given state,
and the virtual machine can resume execution from this snapshot
later. Usually, compiled code is available in di�erent versions. On
the one hand, a bytecoded version, which is on the heap if the
bytecoded version of functions is rei�ed as an object (as in Dart
and Smalltalk). On the other hand one or several machine code
versions are available in the machine code zone. Machine code
versions are usually not part of the heap directly but of a separated
part of memory which is marked as executable. Snapshots can-
not save easily machine code versions of functions as a snapshot
needs to be platform-independent and machine code versions of
functions are not regular objects.

Overall solution. Our architecture, Sista (Speculative Inlining
SmallTalk Architecture) works as follows. Our optimizing compiler,
after doing language-speci�c optimizations such as speculative in-
lining or array bounds check elimination, generates an optimized
version of the function using a bytecode representation and does
not directly generate machine code. This optimized version has
access to an extended bytecode set to encode unchecked operations
such as array access without bounds checks similar to the work
of Béra et al.[Béra and Miranda, 2014]. Optimized bytecoded func-
tions are reifed as objects the same as normal bytecoded functions,
hence they can be saved without any additional work as part of the
snapshot. Then, the VM uses the baseline Just-in-Time compiler
(JIT) as a back-end to generate machine code from the optimized
bytecoded function. The optimized functions are marked, so the
VM can decide to handle di�erently optimized bytecoded functions.

Dynamic deoptimization is also split in two steps. Firstly, Sista
asks the baseline JIT to reify the stack frame from machine state
to bytecode interpreter state of the optimized bytecoded function,
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mapping correctly the register to stack entries and converting ob-
ject representations from unboxed versions to boxed versions, as it
would do for any unoptimized version of the function. Secondly, a
separate deoptimizer maps the bytecode interpreter state of the op-
timized bytecoded function to multiple stack frames corresponding
to the bytecode interpreter state of multiple unoptimized functions,
rematerializing objects from constants and stack values.

With this architecture, the Sista VM can reach peak performance
almost immediately after start-up if it starts from a snapshot where
optimized code was persisted.

Terminology. In the languages supporting snapshots we refer
to, non-tracing JITs are available, we call the compilation unit for
the JIT compilers a function, which corresponds in practice to a
method or a closure.

2 PROBLEM: WARM-UP TIME
The time to reach peak performance in a language virtual ma-
chine is a well-known problem and many teams are trying to
solve it with di�erent approaches such as snapshots in Dart
[Annamalai, 2013], tiered compilation in Java hotspot for Java 7
and 8 [Oracle, 2011] or by saving runtime information across start-
ups [Sun Microsystems, 2006, Systems, 2002]. In some use-cases,
this time does not matter. The warm-up time required to reach
peak performance is negligible compared to the overall runtime of
the application. However, when applications are started frequently
and are short-lived, this time can matter.

The problem statement addressed in this article is then: Can an
object-oriented language virtual machine use runtime optimizations
without requiring warm-up time at each start-up ?

We give three examples where the virtual machine start-up time
matters.

Distributed application. Modern large distributed application
run on hundreds, if not thousands, of slaves such as the slaves one
can rent on Amazon Web Services. Slaves are usually rented per
hour, though now some contracts allow one to rent a slave for 5
minutes or even 30 seconds. If the application needs more power, it
rents new slaves, if it does not need it anymore, it frees the slaves.
The slaves are paid only when needed, no application users imply
no cost whereas the application can scale very well.

The problem is that to reduce the cost to the minimum, the best
would be to rent a slave when needed, and at the second where the
slave is not used, to free it not to pay anymore for it. Doing that
implies having very short lived slaves, with an order of 30 seconds
life-time for example. To be worth it, the time between the slave
start-up and the peak performance of the language used has to be
as small as possible. A good VM for such kind of scenario should
reach peak performance very fast.

Mobile application. In the case of mobile applications, the start-
up performance matters because of battery consumption. Dur-
ing warm-up time, the optimizing compiler recompiles frequently
used code. All this compilation process requires time and energy,
whereas the application is not run. In the example of the Android
runtime, the implementation used JIT compilation with the Dalvik
VM [Bornstein, 2008], then switched to client-side ahead of time
compilation (ART) to avoid that energy consumption at start-up,

and is now switching back to JIT compilation because of the AOT
(Ahead of Time compiler) constraints [Geo�ray, 2015]. These dif-
ferent attempts show the di�culty to build a system that requires
JIT compilation for high performance but can’t a�ord an energy
consuming start-up time.

Web pages. Web pages sometimes execute just a bit of Javascript
code at start-up, or use extensively Javascript in their lifetime
(in this latter case, one usually talk about web application). A
Javascript virtual machine has to reach peak performance as quickly
as possible to perform well on web pages where only a bit of
Javascript code is executed at start-up, while it has also to perform
well on long running web applications.

3 SOLUTION: SNAPSHOTTING OPTIMIZED
CODE

3.1 Overview
We solve this warm-up time problem by saving runtime optimiza-
tions across start-ups. This way, we are able to start the virtual
machine in a pre-heated state. With this approach, we reuse and
take advantage of techniques reaching peak performance but with
the advantage of being e�ective without warm-up time.

Platform-independent. We save optimizations across start-ups
in a platform-independent way: this implies that we cannot save
directly machine code. As our technique depends on snapshots, the
platform-dependency depends on the snapshot being dependent
on a platform or not.

Bytecode saved. Our approach saves the optimized code as a
bytecoded version because the languages with snapshots already
support saving bytecoded functions as part of the snapshot. Byte-
code is already a compressed and platform-independent represen-
tation of executable code. The optimized code is saved using an
extended bytecode set to encode unchecked operations.

Simplicity. We try to keep the solution simple by reusing the
existing snapshot infrastructure, which can persist the bytecode
version of each method. We do not want to extend the snapshot
logic to be able to persist machine code as it is very �ddly. More
precisely, we would need to extend the snapshot logic with speci�c
code for each back-end supported (currently at least ARMv5, x86,
x64 and MIPS little endian) and we would need to handle cases
such as position-dependent machine code.

Overall architecture. For the �rst runs of a bytecode function, the
architecture introduced in the paper is quite standard: the �rst few
runs are interpreted by a bytecode interpreter and for subsequent
runs, a baseline JIT generates a native function corresponding to
the bytecode function and the VM uses it to execute the code. Once
a threshold is reached, the bytecode function is detected as a hot
spot and the optimising JIT kicks in.

In a classical non meta-tracing VM, an optimised native function
would be generated and used to improve the performance. In
our case, the optimising JIT is split in two. First, the high-level
part of the JIT generates an optimised bytecode function based on
the unoptimised bytecode functions and the runtime information
provided by the baseline JIT. Second, the low-level part of the
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JIT, which is the baseline JIT with small extensions, generates an
optimised native function from the optimised bytecode function.
Figure 1 summarizes the overall architecture.

As all bytecode functions, optimised bytecode functions are
platform-independent and can be persisted across multiple start-
ups of the VM. Native functions are however always discarded
when the VM shuts down.

Smalltalk runtime

Virtual machine

Low level JIT
Bytecode to native code

Machine-specific optimisations

High level JIT
Bytecode to bytecode

Smalltalk-specific optimisations

Bytecode functions
(persisted across start-ups)

Native functions
(discarded on shut-down)

Existing baseline JIT
New optimising JIT

Figure 1: Overview of the architecture

3.2 Optimization process
The runtime optimization process has overall the same behavior
as other virtual machines: in the unoptimized machine code, a
portion of code frequently used is detected, recompiled on-the-�y
using information relative to the previous runs. Then the virtual
machine uses the optimized portion of code. The di�erence lies in
the generation of an optimized bytecoded function in the middle.
The full runtime optimization process is as follows:

(1) Hot spot detection: When the baseline JIT compiler gener-
ates an unoptimized version of functions in machine code,
it inserts counters on speci�c locations detailled later in
the paper. Each time the execution �ow reaches a counter,
it increments it by one, and when the counter reaches a
threshold, the portion of code is detected as frequently
used, i.e., as being a hot spot.

(2) Choosing what to optimize: Once a hot spot is detected, the
VM launches the runtime optimizer. The optimizer tries to
�nd what function is the best to optimize. It walks a few
frames in the stack from the active stack frame and based
on simple heuristics (mostly, it tries to �nd a stack frame
where as many closure activations as possible available on
the current stack can be inlined), it determines a function
to optimize.

(3) Decompilation: The optimizer then decompiles the selected
function to an IR (intermediate representation) to start the
optimization process. During decompilation, the virtual
machine extracts runtime information from the machine
code version of the function if available. The decompiler

annotates all the virtual calls and branches in the IR with
type and branch information.

(4) Overall optimization: The optimizer then performs several
optimization passes.

(5) Generating the optimized function: Once the function is
optimized, the optimizer outputs an optimized bytecoded
function, that is encoded thanks to an extended bytecode
set. A speci�c object is kept in the literal frame of the
optimized method to remember all the deoptimization
metadata needed for dynamic deoptimization. This op-
timized bytecoded function looks like any unoptimized
bytecoded function, so it can be saved as part of snapshots.

(6) Installation: The optimized function is installed, either in
the method dictionary of a class if this is a method, or in a
method if it’s a closure.

(7) Dependency management: All the dependencies of the op-
timized functions are recorded. This is important as if
the programmer installs new methods or changes the su-
perclass hierarchy while the program is the running, the
dependency manager knows which optimized functions
needs to be discarded.

3.3 Deoptimization process
The dynamic deoptimization process, again, is very similar to
other virtual machines [Fink and Qian, 2003, Hölzle et al., 1992].
The main di�erence is that it is split in two parts: �rstly the base-
line JIT maps machine state to a state as if the bytecode interpreter
would execute the function, second the deoptimizer maps the in-
terpreter state to the deoptimized interpreter frames.

During dynamic deoptimization, we deal only with the recovery
of the stack from its optimized state using optimized functions to
the unoptimized state using unoptimized functions. The unopti-
mized code itself is always present, as the bytecode version of the
unoptimized function is quite compact. As far as we know, mod-
ern VM such as V8 [Google, 2008] always keep the machine code
representation of unoptimized functions, which is less compact
than the bytecode version, so we believe keeping the unoptimized
bytecode function is not a problem in terms of memory footprint.

(1) JIT map: Deoptimization can happen in two main cases.
First, a guard inserted during the optimization phases of
the compiler has failed. Second, the language requests the
stack to be deoptimized, typically for debugging. Once
deoptimization is triggered, the �rst step of the deopti-
mization process, done by the baseline JIT compiler, is to
map the machine code state of the stack frame to the byte-
code interpreter state, as it would do for an unoptimized
method. This mapping is a one-to-one mapping: a ma-
chine code stack frame maps to a single interpreter stack
frame. In this step, the baseline JIT maps the machine code
program counter to the bytecode program counter, boxes
unboxed values present and spills values in registers on
stack.

(2) Deoptimizer map: The JIT then requests the deoptimizer to
map the stack frame of the optimized bytecoded function
to multiple stack frames of unoptimized functions. In this
step, it can also rematerialize objects from values on stack
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and constants, whose allocations have been removed by
the optimizer. The stack with all the unoptimized functions
at the correct bytecode interpreter state is recovered. The
deoptimizer then edits the bottom of the stack to use the
deoptimized stack frames instead of the optimized ones,
and resumes execution in the unoptimized stack.

4 IMPLEMENTATION CONTEXT
All our implementation and validation have been done on top of the
Cog virtual machine [Miranda, 2008] and its Smalltalk clients Pharo
[Black et al., 2009] and Squeak [Ingalls et al., 1997]. The main rea-
son that led our choice to Smalltalk is the very good support for
snapshots (they’re part of the normal developer work�ow). This
section discusses the speci�cities of Smalltalk, especially in the
case of the two dialects we used, and the implementation of their
common virtual machine. We focus on the features that had an
impact on the design of the architecture.

4.1 Smalltalk characterization
In this subsection we describe brie�y Smalltalk as the language
speci�cities lead to speci�c design choices. We present a small
language overview then three points that directly impact the ar-
chitecture presented in this paper.

Smalltalk overview. Smalltalk is an object-oriented language.
Everything is an object, including classes or bytecoded versions
of methods. It is dynamically-typed and every call is a virtual call.
The virtual machine relies on a bytecode interpreter and a JIT to
gain performance, similarly to Java virtual machines [Oracle, 2014].
Modern Smalltalks directly inherit from Smalltalk-80 speci�ed in
[Goldberg and Robson, 1983] but have evolved during the past 35
years. For example, real closures and exceptions were added.

About native threads: the implementations we used have a
global interpreter lock. Only calls to external libraries through the
foreign function interface and speci�c virtual machine extensions
have access to the other native threads. All the di�erent virtual
machine tasks, such as bytecode interpretation, machine code exe-
cution, just-in-time compilation or garbage collection are not done
concurrently. Therefore, we do not discuss about concurrency as
it is not relevant for our system.

We present now the speci�c Smalltalk features that are im-
pacting our approach and not necessarily present in other object-
oriented languages: �rst-class activation record, snapshots, and
re�ective APIs.

First-class activation record. The current VM evolved from the
VM speci�ed in the blue book [Goldberg and Robson, 1983]. The
original speci�cation relied on a spaghetti stack: the execution
stack was represented as a linked list of function activations. Each
function activation was represented as an object that was available
to the programmer to be read or written as any other object. Over
the years, Deutsch et al., [Deutsch and Schi�man, 1984] changed
the representation of the stack in the VM to use a call stack as
used in other programming languages, where multiple functions
activations are next to each other on stack. However, the VM still
provides the ability to the programmer to read and write function
activations as if they were objects in the state the original bytecode

interpreter would provide. To do so, each stack frame is rei�ed as
an object on demand.

The rei�ed object acts as a proxy to the stack frame for reads
and simple write operations. Advanced operations, such as setting
the caller of a stack frame, are done by abusing returns across stack
pages. In rare cases, the context objects can be a full object and
not just proxies to a stack frame, for example when the VM has no
more stack pages available, it creates full context objects for all the
stack frames used on the least recently used stack pages. Returning
to such context objects can be done only with a return across stack
pages, and the VM recreates a stack frame for the context object to
be able to resume execution.

The debugger is built on top of this stack rei�cation. In addi-
tion, exceptions and continuations are implemented directly in the
language on top of this stack rei�cation, without any speci�c VM
support.

Snapshots. In the Smalltalk terminology, a snapshot, also called
image, is a sequence of bytes that represents a serialized form
of all the objects present at a precise moment in the runtime. As
everything is an object in Smalltalk, including processes, the virtual
machine can, at start-up, load all the objects from a snapshot and
resume the execution based on the active process precised by the
snapshot. In fact, this is the normal way of launching a Smalltalk
runtime.

In Dart, the word snapshot refers to the serialized form of one
or more Dart objects [Annamalai, 2013]. Dart snapshots can save
the whole heap, as part of their full snapshots, but as far as we
know it is not possible in this language to save processes. Hence,
the virtual machine always restarts at the main function once the
snapshot is loaded.

One interesting problem in snapshots is how to save the call
stack, i.e., the processes. It possible in the Smalltalk virtual machine
to convert each stack frame to a context object reifying the function
activation. To perform a snapshot, each stack frame is rei�ed and
only objects are saved in the snapshot. When the snapshot is
restarted, the virtual machine recreates a stack frame for each
function activation lazily from the context objects.

Re�ective APIs. Most Smalltalk runtimes push the re�ection to
the extreme: The original Smalltalk IDE is implemented directly
on top of the re�ective API itself. For example, to add a method to
a class, the re�ective API on classes to install new methods is used.
One interesting aspect is that all the bytecoded versions of the
functions (compiled method and compiled closures) are available
as objects from the language.

4.2 Existing Cog Smalltalk runtime
The existing runtime, provided with the Smalltalk we used, pro-
vides a bytecode compiler and a virtual machine with a bytecode
interpreter, a baseline JIT and a memory manager. It is almost
completely written in a restricted subset of Smalltalk that compiles
to C.

Bytecode compiler. The bytecode compiler is written in Smalltalk
itself and compiles to a stack-based bytecode set. On the contrary
to the Java bytecode set, none of the operations are typed. Most
bytecodes push a value on stack, edit a variable’s value or encode a
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virtual call. Conditional and unconditional jumps are also available
to compile loops and branches.

Interpretation. The VM uses the interpreter to run the �rst exe-
cution of a function. The VM trusts the language to provide correct
bytecodes, there is no bytecode veri�er as in JVMs. At any inter-
rupt point, the VM can recreate a context object from any stack
frame if needed. Virtual calls are implemented in the interpreter
with a global lookup cache, else the look-up is actually performed.

JIT compilation. As each function activation, at the exception of
closure activations, are done through virtual call, the VM uses a
simple heuristic: on global lookup cache hit, the function is eligible
for JIT compilation. The global lookup cache is voided on full
garbage collection and under special circumstances such as the
loading of a new class in the system. It is also partially voided
when a new method is installed or when there is no room to write
a new entry. Hence, in most case a function is compiled to machine
code at second activation, except if it is really not frequently used.

Machine code version of functions. The machine code generated
uses a simple linear scan register allocator, calling convention
for Smalltalk virtual calls and inline caching techniques (with
monomorphic, polymorphic and megamorphic send sites). Each
generated function is followed by metadata so the JIT can convert
at any interrupt point the machine code stack frame to a context
object. The metadata includes mainly a mapping from machine
code program counter to bytecode program counters, but it can
also contain information related to the representation of objects
(boxing and unboxing) or the register state. This is used mostly for
debugging. In this JIT compiler, no runtime recompilation based
on previous runs of the function is done.

The executable machine code zone, where the machine code
version of functions are present has a �xed sized. It is a start-
up setting set by default at 2 Mb. When the machine code zone
over�ows, machine code is evicted on a least recently used basis.
Each frame pointing to a machine code function which is freed is
converted to a bytecode interpreter frame. To avoid converting too
many frames, the execution stack has also a limited size. The stack
has a �xed number of stack pages allocated at start-up. Stack pages
are handled manually by the VM as they are abused for several
features such as setting the caller of a stack frame to another frame.
If there are no more stack pages available, the least recently used
page is freed by converting all the stack frames to context objects
on the heap.

From bytecode to machine code. The runtime switches between
bytecode interpretation to machine code execution in two places:

• function entry: when activating a function through a vir-
tual call or a closure activation, if the function to activate
has been compiled to machine code, the machine code
version of the function is activated.

• loop entry: After a certain number of iteration (currently
20) in the bytecode interpreter, the frame is converted at
loop entry from bytecode interpreter state to machine code
state.

A machine code stack frame can be converted at any interrupt
point to an interpreter frame for debugging. In practice, the runtime

switches mostly from the machine code runtime to the interpreter
runtime when a call to a function not present in the machine
code zone happens or for speci�c routines, such as the garbage
collector’s write barrier.

Platform supported. The runtime is production ready on x86
and ARMv5, while experimental back-ends for x64 and MIPS are
available but have not been used in production yet. The Cog virtual
machine is deployed mainly on Windows, Mac OS X, Linux and
RISC OS (Raspberry pie). It can also run on iOS and Android, but
most people prefer to use native applications on those OS. The VM
supports running in 32 and 64 bits mode, through the snapshot
provided to start the VM is dependent on 32 or 64 bits.

5 EVALUATION
We evaluate our architecture on a variety of benchmarks from the
Squeak/Smalltalk speed center1 that is used to monitor the perfor-
mance of the Cog VM and other compatible virtual machines for
Squeak and Pharo. The benchmarks are adapted from the Com-
puter Language Benchmarks Game suite [Gouy and Brent, 2004]
and contributed by the Smalltalk community. We have selected
these benchmarks to give an indication of how certain combina-
tions of operations are optimized with our architecture. Although
they tend to over-emphasize the e�ectiveness of certain aspects of
a VM, they are widely used by VM authors to give an indication of
performance.

We consider the results of the Cog VM (interpreter and baseline
JIT) our baseline performance. Since we have added counters to
the Cog VM to support our architecture, we also measure the
performance overhead of maintaining these counters without any
additional optimization (Cog+Counters). To show our approach
reduces the required warm-up time, we also compare the VM with
our runtime optimizer on a snapshot without any optimized code
(Sista Cold), and the VM with the runtime optimizer started on a
snapshot that already contains optimized code (Sista Warm).

We measured each benchmark 10 times, with the iteration count
chosen so the each measurement takes at least 60 seconds. We
report the average milliseconds per single iteration for each bench-
mark and the 90 % con�dence interval. For Sista , we start with
an already optimized snapshot, so any initial warmup is only due
to the Cog baseline JIT creating machine code from the already
optimized bytecode. The benchmarks were run on an otherwise
idle Mac mini 7,1 with a Dual-Core Intel Core i7 running at 3GHz
and 16 GB of RAM. For these measurements, we con�gured the
VM to detect frequently used portion of code when a pro�ling
counter reaches 65535 iterations (they are encoded as int16, so this
is currently the maximum) and we allow the optimizer up to 0.4
seconds to produce an optimized method. We use a high counter
value and allow for a long optimization time, because as the opti-
mizations are saved across start-ups we believe it does not matter if
the VM takes a long time to reach peak performance, and we have
found these values to produce good performance across a variety
of benchmarks. Because Sista is written in Smalltalk itself, it is
possible to con�gure various other optimization options depending
on the application, for example, to emphasize inlining, to produce

1h�p://speed.squeak.org

http://speed.squeak.org
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larger or smaller methods, or to spend more or less time in various
optimization steps. In this set of benchmarks, we use a default
con�guration for the optimizer across all benchmarks. Besides the
graphs given below, we report the measurements in Table 1.

A*. The A* benchmark is a good approximation for applications
where many objects collaborate. It measures parsing of large strings
that de�ne the layout of the nodes, message sending between each
node, arithmetic to calculate costs, and collection operations. In
the benchmark, we alternately parse and traverse two di�erent
graphs with 2,500 and 10,000 nodes, respectively. It is also a good
benchmark for inlining block closures that are used in iterations.

Binary tree. The binary tree benchmark allocates, walks and
deallocates binary trees. The benchmark is parameterized with the
maximum tree depth, which we have set to 10.

JSON parsing. We test a JSON parser written in Smalltalk as it
parses a constant, mini�ed, well-formed JSON string of 25 Kilobytes.
This benchmark is heavy on nested loops and string operations, as
well as a lot of parsing rules that call each other.

Richards. Richards is an OS kernel simulation benchmark that
focuses on message sending between objects and block invocation.
We ran this benchmark with the customary idle task, two devices,
two handler tasks, and a worker, and �lled the work queue of the
latter three.

K-Nucleotide. This benchmark reads a 2.4 MB DNA sequence
string and counts all occurrences of nucleotides of lengths 1 and 2,
as well as a number of speci�c sequences. It is a benchmark meant
to test the performance of dictionaries in di�erent languages, but
serves well to test our inlining of small methods into loops. The
benchmark runs much slower than the others due to the large
input, taking over 4 minutes to complete.

Thread ring. The Thread ring benchmark switches from thread
to thread (green threads) passing one token between threads. Each
iteration, 503 green threads are created and the token is passed
around 5,000,000 times.

N-body. N-body models the orbits of Jovian planets, using a
symplectic integrator. Each iteration simulates 200,000 interactions
between the Jovian planets. The n-body benchmark is heavy on
�oat operations, and ideal benchmark to highlight the inlining that
Sista performs.

DeltaBlue. DeltaBlue is a constraint solver, it tests polymorphic
message sending and graph traversal. Each iteration tests updating
a chain of 5000 connected variables once with equality constraints
and once with a simple arithmetic scale constraint.

Spectral Norm. Calculating the spectral norm of a matrix is heavy
on �oating point and integer arithmetic as well as large arrays. The
arithmetic is expected to inline well, but since large allocations
take place throughout this benchmark, the performance bene�t for
Sista is expected to smaller.

Mandelbrot. This benchmark calculates the Mandelbrot set of
on a 1000x1000 bitmap. It is implemented in only one method with
nested loops that almost exclusively calls primitive �oat methods
and thus is a good candidate for Sista optimization.

Meteor. This benchmark solves the meteor puzzle by recursively
trying to �t puzzle pieces together using an exhaustive search
algorithm.

Results.
We distinguish three categories of benchmarks.

Quick start-ups. A*, Binary tree, JSON parsing, Richards, and
K-nucleotide reach quickly peak performance. The di�erence be-
tween Cold Sista and Warm Sista is minimal, as even from a cold
state, the VM is able to reach peak performance during the �rst
few runs out of the ten runs. We can however see that the error
margin in the Cold Sista is greater, as the �rst few runs have lower
performance.

Slow start-ups. Thread ring, N-body, Delta blue and Meteor re-
quire multiple runs to reach peak performance. The average per-
formance of the ten �rst runs is clearly not as good in Cold Sista
that in Warm Sista, as a signi�cant amount of these runs are not
done at peak performance. In fact, in the case of N-body, ten runs
is not even enough to reach peak performance. The error margin
in Cold Sista is very important.

Very slow start-ups. In the case of Mandelbrot and Spectral Norm,
ten runs is far from enough to reach peak performance. An im-
portant part of the execution time in the ten �rst runs is spent in
compilation, leading the benchmark to be slower than the base VM.
If the benchmark is run a couple hundred times instead of only
ten times, the performance of Cold Sista would get close to Warm
Sista, so this overhead is not a problem in practice for long-running
applications. Once peak performance has been reached, Spectral
Norm is 10% faster than Cog. The peak performance of Mandel-
brot is similar to Cog performance, only removing the overhead of
pro�ling counters, because Mandelbrot is a �oating-pointer inten-
sive benchmark and we have not yet implemented �oating-pointer
optimizations in Sista.

Discussion. For all benchmarks our approach shows signi�cant
performance improvements on the scales that we would expect
given the various benchmark’s properties. For these benchmarks,
Sista is up to 80% faster. Since the Cog baseline compiler compiles
almost every method on second invocation, this is also the only
warmup when a snapshot that was warmed up using our approach
is launched. Thus, these benchmarks indicate that Sista can provide
signi�cant performance bene�ts without any additional warmup
time compared to the baseline compiler.

We ran our VM pro�ler to pro�le the VM C code, but as for
real world application, the time spent in the baseline JIT compiler
generating machine code from bytecode is less than 1% of the total
execution time. As the runtime switches from interpreted code
to machine code at second invocation for most functions and at
�rst invocation for optimized functions, the time lost here is too
small to be shown on our graphics. In fact, the time lost here is not
signi�cant compared to the variation so it is di�cult to evaluate
in our current setting. We believe that using a back-end doing
many more machine low-level optimizations would increase the
machine code compilation time and in this case we would be able
to see a di�erence between the �rst run of pre-heated snapshot
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Table 1: Benchmark results with standard errors in avg ms per iteration with 90 % con�dence interval

Benchmark Cog Cog + Counters Sista (Cold) Sista (Warm)

A* 68.39 +- 0.485 72.833 +- 0.129 36.13 +- 1.12 35.252 +- 0.0479
Binary tree 9.301 +- 0.0811 9.694 +- 0.0865 4.505 +- 0.13 4.278 +- 0.0031
Delta Blue 44.33 +- 1.08 47.892 +- 0.638 36.86 +- 6.42 31.315 +- 0.601
JSON parsing 10.545 +- 0.0174 10.826 +- 0.0089 2.125 +- 0.140 2.121 +- 0.00826
Mandelbrot 1035.17 +- 4.99 1429.93 +- 1.2 1876.4 +- 53.4 1038.867 +- 0.604
Richards 5.7419 +- 0.0119 6.388 +- 0.0045 4.375 +- 0.115 4.3217 +- 0.0174
K-Nucleotide 3563.1 +- 28.6 3634.4 +- 21.8 3328.6 +- 71.8 3326.8 +- 20.0
Spectral Norm 305.983 +- 0.494 332.983 +- 0.485 347.15 +- 3.54 276.517 +- 0.347
Thread ring 1237.70 +- 5.73 1244.93 +- 3.89 756 +- 106 686.27 +- 1.56
N-body 358.42 +- 2.74 439.25 +- 0.484 329.5 +- 22.9 281.883 +- 0.836
Meteor 282.858 +- 0.658 301.60 +- 0.132 229.5 +- 24.8 202.07 +- 1.480

and second run as the VM still needs to produce the machine code
for the optimized bytecoded functions.

Our optimizer is controlled by a number of variables that have
been heuristically chosen to give good performance in a variety
of cases. These include, among others, global settings for inlining

depth, the allowed maximum size of optimized methods as well as
methods to be inlined, as well as the time allowed for the optimizer
to create an optimized method before it is aborted. We have found
that for certain benchmarks, these variables can have a great impact.
We are working on �ne-tuning these default values, as well as
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enabling heuristics to dynamically adapt these values depending
on the application.

6 RELATEDWORK
6.1 Preheating through snapshots

Dart. The Dart programming languages features snapshots for
fast application start-up. In Dart, the programmer can generate dif-
ferent kind of snapshots [Annamalai, 2013]. Since that publication,
the Dart team have added two new kind of snapshots, specialized
for iOS and Android application deployment, which are the most
similar to our snapshots.
Android. A Dart snapshot for an Android application is a com-
plete representation of the application code and the heap once the
application code has been loaded but before the execution of the
application. The Android snapshots are taken after a warm-up
phase to be able to record call site caches in the snapshot. The call
site cache is a regular heap object accessed from machine code, and
its presence in the snapshot allows to persist type feedback and
call site frequency.

In this case, the code is loaded pre-optimized with inline caches
pre�lled values. However, optimized functions are not loaded
as our architecture allows to do. Only unoptimized code with
precomputed runtime information is loaded.
iOS. For iOS, the Dart snapshot is slightly di�erent as iOS does not
allow JIT compilers. All reachable functions from the iOS applica-
tion are compiled ahead of time, using only the features of the Dart
optimizing compiler that don’t require dynamic deoptimization. A
shared library is generated, including all the instructions, and a
snapshot that includes all the classes, functions, literal pools, call
site caches, etc.

This second case is di�cult to compare to our architecture: iOS
forbids machine code generation, which is currently required by
our architecture. A good application of our architecture to iOS is
future work.

Cloneable VMs. In Java, snapshots are not available and used
by default. However, Kawachiya and all describe in their
work [Kawachiya et al., 2007] extensions to a Java VM to be able
to clone the state of a running Java VM in a similar way to snap-
shots. In this work, the cloned VM duplicates the heap but also
the machine code generated by the di�erent JIT tiers. Cloning the
machine code improves start-up performance over our approach,
as Sista requires to generate machine code from the optimized
bytecode functions. However, the clone is processor-dependent:
there is no way of cloning with their approach a Java runtime from
an x86 machine to an ARMv6 machine. Our approach requires
slightly more warm-up time to quickly compile optimized functions
to machine code, but is platform-independent.

6.2 Fast warm-up
An alternative to snapshots is to improve the JIT compiler so the
peak performance can be reached as early as possible. The improve-
ments would consists of decreasing the JIT compilation time by
improving the e�ciency of the JIT code, or have better heuristic so
the JIT can generate optimized code with the correct speculations
with little runtime information.

Tiered architecture. One solution, used by the most recent JVMs
and several Javascript VMs such as V8 [Google, 2008] or Webkit,
is to have a tiered architecture. The idea is that code would be exe-
cuted slowly the few �rst iterations, a bit faster the next iterations,
and very quickly after an certain number of optimizations.

If we take the example of Webkit (version in production from
March 2015 to February 2016) [Webkit, 2015], the code is:t

• interpreted by a bytecode interpreter the �rst 6 executions.
• compiled to machine code at 7th execution, with a non

optimizing compiler, and executed as machine code up to
66 executions.

• recompiled to more optimized machine code at 67th exe-
cution, with an optimizing compiler doing some but not
all optimizations, up to 666 executions.

• recompiled to heavily optimized machine code at 667th
execution, with an optimizing compiler using LLVM as a
backend.

At each step, the compilation time is greater but the execution
time decreases. This tiered approach (4 tiers in the case of Webkit),
allows to have good performance from start-up, while reaching
high performance for long running code.

Saving runtime information. To reach quickly peak performance,
an alternative of saving optimized code is to save the runtime infor-
mation. The Dart snapshot saves already the call site information
in its Android snapshots. Other techniques are available.

In Strongtalk [Sun Microsystems, 2006], a high-performance
Smalltalk, it is possible to save the inlining decision of the op-
timizing compiler in a separate �le. The optimizing compiler can
then reuse this �le to take the right inlining decision in subse-
quent start-ups. In [Arnold et al., 2005], the pro�ling information
of unoptimized runs is persisted in a repository shared by multiple
VMs, so new runs of the VM can re-use the information to direct
compiler optimizations.

Saving runtime information decreases the warm-up time as the
optimizing JIT can speculate accurately on the program behavior
with very few runs. However, on the contrary to our approach,
time is still wasted optimizing functions.

Saving machine code. In the Azul VM Zing [Systems, 2002],
available for Java, the o�cial web site claims that "operation teams
can save accumulated optimizations from one day or set of market
conditions for later reuse" thanks to the technology called Ready
Now!. In addition, the website precises that the Azul VM provides
an API for the developer to help the JIT to make the right optimiza-
tion decisions. As Azul is closed source, implementation details
are not entirely known. However, word has been that the Azul VM
reduces the warm-up time by saving machine code across multiple
start-ups.

Aside from Azul, the work of Reddi and all [Reddi et al., 2007]
details how they persist the machine code generated by the optimiz-
ing JIT across multiple start-ups of the VM. JRockit [Oracle, 2007],
an Oracle product, is a production Java VM allowing to persist
the machine code generated by the optimizing JIT across multiple
start-ups.

We did not go in the direction of machine code persistence as
we wanted to keep the snapshot platform-independent way: in our
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architecture, starting the application on x86 instead of ARMv5 does
not require the saved optimized code to be discarded, while the
other solutions discussed in this paragraph do. However, we have
a small overhead due to the bytecode to machine code translation
at each start-up. In addition, the added complexity of machine
code persistence over bytecode persistence should not be underes-
timated.

Ahead-of-time analysis. In the work of Krintz and
Calder [Krintz and Calder, 2001], static analysis done ahead
of time on Java code generates annotations that are used by
the optimizing JIT to reduce compilation time (and hence, the
warm-up time). As for the persistence of runtime information,
on the contrary to our approach, time is still wasted at runtime
optimizing functions.

Ahead-of-time compilation. The last alternative is to pre-
optimize the code ahead of time. This can be done by doing static
analysis over the code to try to infer types. Applications for the
iPhone are a good example where static analysis is used to pre-
optimize the Objective-C application. The peak performance is
lower than with a JIT compiler if the program uses a lot of virtual
calls, as static analysis are not as precised as runtime information
on highly dynamic language. However, if the program uses few
dynamic features (for example most of the calls are not virtual) and
is running on top of a high-performance language kernel like the
Objective-C kernel, the result can be satisfying.

7 DISCUSSION AND FUTUREWORK
7.1 Handling exotic Smalltalk operations
Smalltalk provides some operations that are not typically available
in other object-oriented languages. We call them exotic operations.
These operations are problematic for the optimizer. We provide
examples for these exotic operations and discuss how the system
can handle them.

Become. One operation is called become. It allows an object to
swap identity with another one, i.e., if an object a becomes an
object b, all the references to a now refer to b and all the references
to b refer to a. This operation was made e�cient using di�erent
strategies described in [Miranda and Béra, 2015]. This feature has
some implications in the context of the runtime optimizer. At any
interrupt point, there could be a process switch and from the other
process, any of the temporary variable of the optimized stack frame
could be changed to any object in the heap. This would invalidate
all assumptions taken by the optimizer.

Heavy stack manipulation. The other exotic operations are re-
lated to stack manipulation. Smalltalk rei�es the call stack and
allows the program not only to re�ect on the call stack, but also to
manipulate it. We discussed this in in Section 4 when we explained
that for example the developer can set the caller of any stack frame
to another frame.

Current Solution: Deoptimization for exotic operations. All these
operations are uncommon in a normal Smalltalk program at run-
time. They are usually used for implementing the debugging func-
tionality of the language. Currently, pro�ling production applica-
tions does not show that we would earn noticeable performance if
we would optimize such cases. The solution therefore is to to al-
ways deoptimize the stack frames involved when such an operation
happens. In the case of become, if a temporary variable in a stack
frame executing an optimized method is edited, we deoptimize
the frame. In the case of the stack manipulation, if the rei�ca-
tion of the stack is mutated from the language, we deoptimize the
corresponding mutated stack frames.

Future Work: Optimizing exotic operations. It could be possi-
ble to have the runtime optimizer aware of these features and
to handle them speci�cally. In fact, optimizing the stack ma-
nipulation would be similar to the optimization of exceptions.
[Ogasawara et al., 2001].

7.2 Platform-dependency and Snapshots
In the case of Smalltalk, snapshots are independent of the processor
and the OS used. It is proven as the same snapshot can be deployed
for example on x86, ARMv5 and Windows or Linux. However,
Smalltalk snapshots are dependent on the machine word size: 32
bit or 64 bit snapshots are not compatible. They are not compatible
because the size of managed pointer is di�erent, but also because
the representation of speci�c objects, such as numbers, is di�erent.
It is however possible to convert o�ine a 32 bit snapshot to 64 bit
and vice-versa.

As some optimizations related to number arithmetics, such as
over�ow checks elimination, depends on the number representa-
tions, the current optimizing compiler also adds some dependencies
to the machine word size. A fully portable solution would either
need not to do optimizations on machine word speci�c number
representations or de-optimize the a�ected code on startup.

7.3 Limitation of the stack-based IR
The bytecoded function (optimized or not) are encoded in a stack-
based representation. This can be seen as a problem as it is very
di�cult to do the optimizations passes on a stack-based IR. To
avoid this problem, the optimizer decompiles the bytecode to a non
stack-based SSA IR. This implies that the optimizer looses time to
translate the bytecode to its IR, and then its IR back to the extended
bytecode. The latter is questionable as the optimizer IR has more
information than the generated bytecode (for example, it knows
the liveness of each SSA value). Information lost here could be
pro�table for low level optimization such as register allocation and
instruction selection.

A possible future work is to design a better representation for
bytecoded functions, especially the optimized ones.

We have not invested yet in that direction as we believe that
low level machine speci�c optimizations do not earn a lot of per-
formance for high level languages such as Smalltalk compared to
language-speci�c optimizations. Our belief is based on the opti-
mizing compiler Crankshaft, Javascript V8 [Google, 2008] previous
optimizing compiler, which is doing very little low level optimiza-
tions and is performing very well. Our back-end uses only a few
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simple heuristic for instruction selection and a simple linear scan
algorithm for register allocation.

7.4 Optimizer
We chose to implement the runtime compiler from bytecoded func-
tions to optimized bytecoded functions in Smalltalk instead of C as
the rest of the VM. We made this decision because our engineering
is more productive in high-level language such as Smalltalk com-
pared to low-level languages such as C. The optimizer is running
in the same runtime as the application.

Pros. There were good points in our experience, as for example
we could use all the Smalltalk IDE tools and debug the optimizing
compiler while it was optimizing a method in the active runtime.
Using Smalltalk allows to ignore all the memory management
constraints that we have in C.

Cons. However, there are some drawbacks.
Firstly, the runtime now depends on each library the optimizer

uses. For example, if you decide to use a speci�c collection in the
runtime optimizer, then editing the collection implementation may
break the optimizer compiler and crash the runtime. Hence, we
chose to limit as much as possible the dependencies of the runtime
compiler, to a minimal part of the Smalltalk kernel. Programming
the optimizer is therefore quite di�erent from normal Smalltalk
development as we have to keep as few dependencies as possible.

Secondly, the language has now access to both the optimized
and non optimized state of each function activation. When the
programmer now accesses the rei�cation of a stack frame, depend-
ing on the state of optimization, an optimized function activation
might be shown. We are adapting the debugging tools to request
function activation to be deoptimized when needed. In fact, we
are adding an IDE settings: the developer may or may not want to
see the stack internals, depending on what he wants to implement.
When programming normal applications, the developer usually
does not want to see the optimized code, but when programming
the optimizing compiler itself, the developer usually wants to see
it.

7.5 Process and snapshots.
In the case of Smalltalk, processes are persisted in the snapshot.
For example, if a snapshot is taken while some code displays an
animation, restarting the VM using the snapshot will resume the
animation at the exact same point where it was when the snapshot
was taken. To persist a process, the Smalltalk runtime has to persist
all the execution stacks.

In a classical JIT compilation approach, only machine code ver-
sions of optimized functions are available and stack frames refer to
them. As it is very di�cult to save directly the machine code version
of the method in the snapshot (because of platform-dependency
and position-dependent code for example), persisting stack frames
referring to optimized functions is problematic. Optimized func-
tion are generated in a non deterministic way as the optimizing
compiler depends on runtime type information, so it is not trivial
to recreate them at start-up.

Persisting processes is di�cult in classical JIT compiler. Our
architecture solves that problem by allowing to persist bytecoded

versions of optimized function. In our case, the VM persists pro-
cesses by mapping all machine code state of stack frames to byte-
code interpreter state, and then persist all the stack frames in their
rei�ed form.

7.6 Memory footprint
Usually when dealing with speculative optimizations in JIT compil-
ers, one evaluates the memory footprint taken by the deoptimiza-
tion metadata. That evaluation would be really interesting in our
context as the metadata is split in two parts:

• A part next to the machine code version of the method to
map machine state to bytecode interpreter state.

• A part in the literal frame of the bytecoded optimized func-
tion to map the optimized stack frame to non optimized
stack frames.

Does the split implies a larger memory footprint, and, if so, how
much bigger is the memory footprint ? In our implementation,
we have kept the metadata almost uncompressed (We used a very
naive compression algorithm). Working on an e�cient serializer to
compress this metadata and an analysis of memory usage is future
work.t

8 CONCLUSION
In this paper we described an architecture that saves optimization
across start-ups by saving optimized functions as part of a snapshot.
The architecture allows to decrease the warm-up time needed by
an object-oriented language virtual machine required to reach peak
performance.

A �rst version has been implemented and it can run simple
benchmarks. We need to spend more time stabilizing the optimizer
and integrating it with the debugging tools to allow it to be used in
production applications. Especially, we are targeting a distributed
application deployed at a customer.

Snapshot is not really a well-know technique. To our knowledge,
the most popular languages providing this feature are Smalltalk
and Dart. Decreasing the warm-up time for virtual machine is an
interesting problem as it applies directly on today’s application
use-cases such as web pages, mobile applications and distributed
applications. It seems that snapshot is a useful technique to speed
up start-up time in this context, so maybe this technique will be-
come more popular in the future.
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