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Abstract. Today’s programming platforms do not provide sufficient
constructs that allow a program’s behavior to depend on the context
in which it is executing. This paper presents the design and implemen-
tation of programming language extensions that explicitly support our
vision of Context-oriented Programming. In this model, programs can be
partitioned into layers that can be dynamically activated and deactivated
depending on their execution context. Layers are sets of partial program
definitions that can be composed in any order. Context-oriented Pro-
gramming encourages rich, dynamic modifications of program behavior
at runtime, requiring an efficient implementation. We present a dynamic
representation of layers that yields competitive performance characteris-
tics for both layer activation/deactivation and overall program execution.
We illustrate the performance of our implementation by providing an al-
ternative solution for one of the prominent examples of aspect-oriented
programming.

1 Introduction

In Context-oriented Programming, programs consist of partial class and method
definitions that can be freely selected and combined at runtime to enable pro-
grams to change their behavior according to their context of use. In [18], we have
introduced this idea and presented the programming language ContextL which
is among the first language extensions that explicitly realize this vision.3 As a
motivating example in that paper, an alternative implementation of the model-
view-controller framework is illustrated that avoids any secondary non-domain
classes and thus increases understandability and flexibility at the same time.

Context-oriented Programming encourages continually changing behavior of
programs according to the context of use, and employs repeated changes to class
and method definitions at runtime. Therefore, efficient implementation strategies
are needed for Context-oriented Programming to become practical.
? In: D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 84–103, 2006.
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The contribution of this paper is a novel design and implementation that
addresses these needs, yielding the desired efficiency characteristics.

2 Context-oriented Programming

2.1 Motivation

In the following, we present examples that motivate the need to be able to write
code with a meaning that is not fully self contained, but partially depends on
the context in which it is deployed and executed.

– Mobile applications running on mobile devices might need to dynamically
adjust their behavior according to the geographical context in which they
are used [12].

– Mobile code typically depends on the context of the runtime environment in
which it is executed, such as applets or software agents [21].

– Exploration environments create safe contexts in which to execute applica-
tions and can considerably help users to learn how to use them, as has been
shown by research in the field of Human-Computer Interaction [46].

foo

System

void doThis (Context ctx) {
  if (ctx == foo) {
    doThisInFooStyle(...)
  } else if (ctx == bar) {
    doThisInBarStyle(...)
  } ...
}

ThisClass

void doThat (Context ctx) {
  if (ctx == foo) {
    doThatInFooStyle(...)
  } else if (ctx == bar) {
    doThatInBarStyle(...)
  } ...
}

ThatClass

bar

doThis (foo)

doThis (bar)

Fig. 1. Context-dependent behavior through if statements.

With contemporary mainstream programming languages, the only way to
introduce context-dependent behavior into a program is either by inserting if
statements everywhere that check for the context in which a program is running
(Fig. 1), violating one of the fundamental principles of object-oriented program-
ming, namely to avoid if statements for achieving polymorphic behavior, or



else by factoring out the context-dependent behavior into separate objects that
can be substituted according to the context in which a program is used. Both
approaches lead to unnecessarily complicated code that is hard to comprehend
and even harder to maintain. Furthermore, they can only be applied for context
dependencies that are anticipated in the software development process. There
are cases in which it is clearly not possible to foresee all context-dependent issues
and without explicit support, it is difficult to write maintainable and robust code
that handles them well. With Context-oriented Programming on the other hand,
we can factor out partial class definitions into separate layers. As illustrated in
Fig. 2, we can then, depending on the context of use, select different layers for
further program execution. The principal notion of such layers as partial pro-
gram definitions has been suggested before ([3, 40], cf. the section on related
work in this paper). In our approach, we extend this idea with the notion of dy-
namically scoped layer activation (see Sect. 2.4), resulting in a viable approach
for expressing context-dependent behavior.

foo

System

void doThis () {
  ...
}

ThisClass <foo>

void doThat () {
  ...
}

ThatClass <foo>

bar

doThis ()

doThis ()

void doThis () {
  ...
}

ThisClass <bar>

void doThat () {
  ...
}

ThatClass <bar>

Fig. 2. Context-oriented Programming with layers.

2.2 ContextJ/ContextL

ContextL is one of our first programming language extensions that explicitly
support a context-oriented programming style [18]. While it is an extension to
the Common Lisp Object System (CLOS, [4]), the features we describe are con-
ceptually independent of that particular object model. In order to ease the ac-
cessibility of this paper, code examples are given in a Java-style syntax instead
of the original Lisp syntax. This is possible because in this paper, we only deal



with a subset of CLOS that is compatible with a similar subset of Java. Con-
sequentially, we call this hypothetical Java-style language extension ContextJ,
which we refer to in this paper when we discuss Java-specific issues. Since we
are concerned with illustrating ContextL features using a Java-style syntax, we
do not consider advanced Java language constructs that are not available or
necessary in CLOS, like inner classes or generic types, but restrict ourselves to
essentially the feature set of JDK 1.0. Adapting Java-specific features, like its
static type system, to match the new constructs can be a topic for future work.

2.3 The Figure Editor Example

The figure editor [42] is a popular example widely used to motivate aspect-
oriented programming. It is a variation of a similar example used to illustrate
the notion of jumping aspects [8]. In this example, there is a class hierarchy for
graphical objects of which instances are to be presented on a display. Some of
these graphical objects are implemented by other, simpler graphical objects. So
for example, a line is described by two end points. In order to move such objects
to a different location, the contained simpler objects must be moved individually.
Whenever the description of a graphical object is changed, its presentation on
the screen should be updated accordingly.

The basic class hierarchy can be implemented in a plain object-oriented lan-
guage as shown in Fig. 3: A figure element is described by an interface which
is implemented by concrete classes, such as Point and Line.4 Note that the
required update of the display is not part of the code yet, but will be added in
the following.

2.4 Layers

Layers are the essential extension provided by ContextL on which all subsequent
features of ContextL are based. Layers can be defined by the layer construct:

layer DisplayLayer { /*...*/ }

Layers have a name and comprise partial class definitions, as shown in Sect.
2.5. There exists a predefined root layer. All class definitions that are not explic-
itly placed in a particular layer are by default associated with the root layer.

Layers can be activated and deactivated in the dynamic scope of a program:

with (DisplayLayer) { /* ... contained code ... */ }
without (DisplayLayer) { /* ... contained code ... */ }

Dynamically scoped layer activation/deactivation has the effect that the layer
is active/inactive during execution of the contained code, including all the code
that the contained code executes directly or indirectly. When the control flow
4 Since ContextJ would not need to change any of the existing Java language con-

structs, we can define and use interfaces, classes, fields, and methods as before.



interface FigureElement {

void move (int dx, int dy);

}

class Point implements FigureElement {

int x, y;

Point(int newX, int newY) { this.x=newX; this.y=newY; }

void setX(int newX) { this.x=newX; }

void setY(int newY) { this.y=newY; }

int getX() { return this.x; }

int getY() { return this.y; }

void move(int dx, int dy) { /*...*/ }

}

class Line implements FigureElement {

Point p1, p2;

Line(Point newP1, Point newP2) { this.p1=newP1; this.p2=newP2; }

void setP1(Point newP1) { this.p1=newP1; }

void setP2(Point newP2) { this.p2=newP2; }

Point getP1() { return this.p1; }

Point getP2() { return this.p2; }

void move(int dx, int dy) { /*...*/ }

}

Fig. 3. A basic implementation of the figure editor example.

returns from the dynamically scoped layer activation/deactivation, a layer’s ac-
tivation state is reverted to the previous state. This time interval between acti-
vation/deactivation of a layer and subsequent reversal to the previous activation
state is also called the dynamic extent of the with/without block.

Layer activation can be nested, meaning that a layer can be activated/deacti-
vated more than once in an individual flow of control. Furthermore, dynamically
scoped layer activation/deactivation only affects the activity state of layers ap-
plied in the context of the current thread. The activity state of layers in other
threads will remain unaffected.

2.5 Layered Classes

A class definition, or parts of it, can be associated with a specific layer:

layer DisplayLayer {



class Display { /*...*/ }
// ...

}

Here, such an association does not have a useful effect yet: The class can
still be instantiated from any other layer. However, placing a class definition in
a specific layer gets interesting when we use layers to add to the definition of a
class that is already defined in another layer. In Fig. 4, we add the display update
mechanism: The layer DisplayLayer contains a class Display that implements
the code for updating the graphical representation of an object on a screen
(not shown here). It also contains additional definitions for our classes Point
and Line as well as the interface FigureElement, introducing after methods
for the state changing methods setX, setY, setP1, setP2 and move. All these
after methods contain calls to the update method of the Display class.

layer DisplayLayer {

class Display {

// ...

static void update(FigureElement elm) { /*...*/ }

}

interface FigureElement {

after void move (int dx, int dy) {

Display.update(this);

}

}

class Point { class Line {

after void setX (int newX) { after void setP1 (Point newP1) {

Display.update(this); Display.update(this);

} }

after void setY (int newY) { after void setP2 (Point newP2) {

Display.update(this); Display.update(this);

} }

} }

}

Fig. 4. The DisplayLayer for the figure editor example.

It is important to observe that the original classes Point and Line, and
the interface FigureElement are not replaced. They still have their original
definitions. The fact that the new extensions are placed in the DisplayLayer
ensures that the respective after methods are executed when and only when
the DisplayLayer is active. So an update of the display is just visible when the



figure elements are changed in the dynamic extent of a with (DisplayLayer)
{...} activation.

ContextJ would have to add before, after and around method qualifiers
along the lines of before, after and around methods in CLOS.5 They are meth-
ods of their own and are combined with other methods of the same signature.
This is different from the advice-construct in AspectJ. AspectJ-style advice code
adds behavior to pointcuts, that is collections of join-points, which are not nec-
essarily methods, and not necessarily of the same signature. In our example, the
after methods are all executed after the respective primary methods associated
with the “root” layer in Fig. 3, but only if the DisplayLayer is active.

Due to the fact that layer activation/deactivation is confined to the current
thread, display updates occur only in threads in which DisplayLayer is active,
but not in other threads unless DisplayLayer is utilized within them as well.

2.6 Nested Layer Activation/Deactivation

ContextL does not automatically activate layer definitions. Layers must be ex-
plicitly activated via the with construct to take effect. Indeed, layer activation
is provided as a base-level language construct, so layers can be activated any-
where in a ContextL program, including layers that are loaded while a program
is already running and also in classes that are loaded after a program is al-
ready running. One especially interesting case is the nesting of activation and
deactivation of the same layer within the same control flow because this allows
solving the phenomenon of jumping aspects without using AOP-style pointcuts,
as shown below.

The figure editor example has been introduced in [8, 42] to illustrate the
jumping aspects phenomenon: Whenever we change the state of a simple graph-
ical object, we can immediately update its presentation on the screen. However,
when we change the state of a complex object that consists of other, simpler
objects, the change has to be propagated to those simpler objects, but screen
updates should be deferred and combined until all objects are changed that
the complex object comprises. This has led to the introduction of cflow-style
constructs in AspectJ and subsequent AOP approaches [31].

ContextL’s with and without are base-level language constructs that al-
low us to achieve the effect of deferring the update on the screen by providing
around methods instead of the above after definitions. Figure 5 contains a re-
vised version of the DisplayLayer where after methods are replaced by around
methods that deactivate the DisplayLayer before they proceed6 to the respec-
tive primary method. This has the effect that the method definitions of the
DisplayLayer are not executed during the extent of these calls to proceed, so
no display update will take place here. Only after leaving the without block,
the update method is called eventually, and only once.

5 Indeed, the corresponding before, after and around methods in ContextL are just
taken over from CLOS of which ContextL is an extension.

6 Similar to proceed in AspectJ and call-next-method in CLOS.



layer DisplayLayer {

class Display {

// ...

static void update(FigureElement elm) { /*...*/ }

}

interface FigureElement {

around void move (int dx, int dy) {

without (DisplayLayer) { proceed(); }

Display.update(this);

}

}

class Point { class Line {

around void setX (int newX) { around void setP1 (Point newP1) {

without (DisplayLayer) without (DisplayLayer)

{ proceed(); } { proceed(); }

Display.update(this); Display.update(this);

} }

around void setY (int newY) { around void setP2 (Point newP2) {

without (DisplayLayer) without (DisplayLayer)

{ proceed(); } { proceed(); }

Display.update(this); Display.update(this);

} }

} }

}

Fig. 5. The DisplayLayer with around methods to defer the update of the display.

Now, a crucial question is whether continually activating and deactivating
layers is a reasonable approach with regard to efficiency considerations. Sect. 4
discusses this question after the presentation of our implementation approach.

3 Implementation

This section presents an implementation of the language constructs introduced
in the previous section. ContextL is an extension to CLOS. In our description we
focus on the implementation strategy that is reusable in other languages, without
going too much into the CLOS-specific details. The general idea is this:7

– Layers are implemented internally as classes.
– Combinations of currently active layers are represented as classes that inherit

from the primary layer classes using multiple inheritance.
7 Some of these building blocks do not exist in languages like Java and C#, especially

multiple dispatch and multiple inheritance. However, Section 3.4 refers to existing
approaches that can be used for implementing them in those languages.



– A dynamically scoped variable contains a prototype instance of such a layer
combination class.

– Multiple dispatch is used to dispatch on both the currently active combina-
tion of layers and the receiver of a message.

– Efficiency is gained by providing fast caches for layer combinations and
reusing efficient implementations for multiple inheritance and multiple dis-
patch.

3.1 Layers as Classes

Primary layers. Layers which are explicitly introduced by a programmer are
called primary layers. For example, the following declaration defines a primary
layer.

layer DisplayLayer { /*...*/ }

In the ContextL implementation, such primary layers are internally supple-
mented by dynamically generated layers which programmers cannot directly
refer to (see below).

Layers are implemented as classes. Each layer declaration is represented in-
ternally by a corresponding class. So for example, the above DisplayLayer is
internally represented by the following class.

class DisplayLayer { /*...*/ }

Active layers are combinations of such primary layers. Active layers are repre-
sented by dynamically generated combination classes which are ordinary classes
that inherit from the classes that represent primary layers. Multiple inheritance
is used to connect the various static and dynamic layer representations to create
a chain of active layers. In Fig. 6, a combination of Layer1, Layer2, Layer3,
and the RootLayer is realized as a combination class named Layer1+2+3* that
inherits both from Layer1 and a combination class named Layer2+3* that rep-
resents Layer2, Layer3, and the RootLayer. The latter combination class is in
turn formed by inheriting from both Layer2 and a combination class named
Layer3* that represents Layer3 and the RootLayer, and so forth.

Multiple inheritance typically results in the possible occurence of conflicting
inherited members and thus in the need to determine a linearization of all super-
classes [2]. However, in our case the linearization of layers is trivial: Each dynam-
ically generated combination class has exactly two superclasses, one static layer
representation (such as DisplayLayer, Layer1, Layer2, etc.) and one previous
dynamic layer representation (such as Layer1+2+3*, etc.). For each combination
class, the static layer representation takes precedence over the previous dynamic
layer representation. Therefore after each layer activation, the most recent com-
bination class comes first, followed by the most recently activated layer, followed
by the previous combination class, and so on, which naturally leads to the re-
quired ordering of layers. For example in the combination illustrated in Fig. 6, the
linearization of the class hierarchy starting from Layer1+2+3* is Layer1+2+3*,
Layer1, Layer2+3*, Layer2, Layer3*, Layer3, RootLayer in that order.



Layer1

Layer2

Layer3

RootLayer

Layer3*

Layer2+3*

Layer1+2+3*

static layer 
representations
(primary layers)

dynamic layer 
representations
(active layers)

Fig. 6. Static and dynamic layers.

Different layer combinations can coexist in the same program. Figure 7 illus-
trates how both a combination of layers Layer1 and Layer3 and a combination
of layers Layer1 and Layer2 can exist at the same time. Indeed, any combina-
tion can be built without interfering with other combinations. Note that this
allows the implementation to reflect the order in which layers are activated and
deactivated: Whenever a layer is activated, it is ensured that it will be placed
in front of all other already active layers. When it is already active itself, it will
nevertheless be placed in front of all other already active layers from which it is
implicitly removed beforehand as part of the activation process.

For example, assume layers Layer1 and Layer3 are already active in that
order. An activation of layer Layer2 will lead to a chain of layers Layer2, Layer1
and Layer3 in that order. Given that latter order, an activation of the (already
active) layer Layer1 will internally lead to first a deactivation and a subsequent
reactivation of layer Layer1, and thus to a chain of layers Layer1, Layer2 and
Layer3 in that order.

The various possible combinations do not have to be determined at compile
time, but can be created on demand at runtime if the given language allows for
creating classes at runtime (as is possible in CLOS, Smalltalk, Java, and so on)
so that only the actually required combinations are ever created. Layer combi-
nations only need to be created once, because when they have been created they
can be cached and reused. Layers are always activated/deactivated relative to
the currently active layer combination. Therefore, such caches can be associated
with the dynamically generated classes that represent layer combinations and



Layer1

Layer2

Layer3

RootLayer

Layer3*

Layer1+3* Layer1+2*

Layer2*

primary 
layers

active layers
thread B

active layers
thread A

Fig. 7. Different layer combinations in different threads.

only need to include the new combinations relative to those combinations. This
enables the use of very small and fast caches.

3.2 Dynamic Scoping

The with and without constructs activate/deactivate layers with dynamic ex-
tent, that is, they effectively implement dynamic scoping for layers, including
the fact that activations/deactivations are confined to the current thread and so
do not interfere with activations/deactivations in other threads.

Such a dynamically scoped activation scheme can be easily implemented if
the underlying language offers dynamically scoped variables which can already
be rebound without affecting other threads [15]. We can then instantiate the
class that represents the currently active combination of layers and store it in
a dynamically scoped variable. By default, that variable contains an instance
of the root layer representation, and can later be rebound to contain instances
of the corresponding layer combinations. Such instances are called prototypical
because they do not contain any state or behavior of their own, but are just used
to select the correct behavior for layered classes and methods (see below).



Common Lisp provides dynamically scoped variables directly [41] and Java
allows their simulation by storing a stack data structure in a thread-local variable
[11]. Thread locality ensures non-interference with other threads, and the stack
allows shadowing a previous layer combination with a new one by pushing the
new layer combination at the beginning of the execution of a with/without
block, and by popping it at the end.

3.3 Method Invocation

Having modelled layers as classes and layer combinations as dynamically gener-
ated classes, we turn to the question of which methods to execute in response to a
message. It becomes obvious that this depends on both the class that represents
the currently active layer combination and the class of the message receiver. In
other words, we need multiple dispatch. Common Lisp already has multimeth-
ods, and it is possible to add multimethods to Java – see for example MultiJava
[13]. To illustrate this further, Figure 8 shows how the method move from our
figure editor example can be understood to be internally mapped to a multi-
method definition using a combination of MultiJava and ContextJ syntax. The
Layer@SomeLayer notation used in Fig. 8 is taken from MultiJava and specifies
that the corresponding parameter is of the (static) type Layer but further spe-
cialized to be applicable only when the respective parameter is an instance of
SomeLayer at runtime. How multimethods in MultiJava are translated into Java
bytecode on a per-compilation-unit basis is described in [13].8

3.4 Putting It All Together

We have implemented ContextL as an extension to CLOS in a relatively straight-
forward way. This is because CLOS provides all the necessary ingredients de-
scribed above, namely dynamic class generation, multiple inheritance, dynami-
cally scoped variables, and multiple dispatch. As indicated, a similar implemen-
tation could in principle be achieved in a Java-based implementation as well:
Classes can indeed be generated at runtime [20], a variant of dynamically scoped
variables is already present in the form of thread-local variables [11], and it has
already been described how to add multiple dispatch [13]. Currently, it is not
obvious to us how to incorporate the required multiple inheritance mechanism
into Java. However, subsets of multiple inheritance and their implementation
have already been described, for example, for C# based on traits [37] and for
Java based on interfaces with default implementations [35]. It is likely that such
subsets are sufficient to support our model, but this needs to be explored further
to be answered appropriately.

8 Note that MultiJava implements symmetric dispatch while CLOS implements asym-
metric dispatch by default. This issue would need to be addressed in an implemen-
tation of ContextJ. In the current ContextL implementation, the layer argument in
a layered function/method has least priority with regard to argument precedence
order.



// in the root layer

class Point implements FigureElement {

// ...

void move (Layer@RootLayer layer, int dx, int dy)

{ /*...*/ }

}

layer DisplayLayer {

// ...

class Point {

// ...

around void move (Layer@DisplayLayer layer, int dx, int dy)

{ /*...*/ }

}

}

Fig. 8. Internal mapping of layered methods to multimethods.

Note that the implementation we describe is only one possible implementa-
tion of layers and dynamically scoped layer activations. For example, we have
a prototypical implementation of a minimal version of ContextL that is solely
based on dynamically scoped instance variables, a construct of ContextL not de-
scribed here (“special slots”, see [18]). However, the implementation described
in this paper yields competitive performance characteristics because multiple
active layers are always represented by exactly one generated class. In compar-
ison, straightforward implementation techniques for cflow-style constructs in
aspect-oriented language implementations introduce if-tests for each pointcut
that contains a cflow expression which is reported to lead to substantial run-
time overheads [19]. In our approach, computational overhead occurs exclusively
on the first activation/deactivation of a previously unused combination of layers
and on the first message send in a previously unused combination of methods
[30]. After that, both lookups of layer combinations and method dispatches take
advantage of highly efficient caches.

4 Benchmarks

We have used the figure editor example described in Sect. 2.3 as the basis for
a benchmark that measures the effect of layer activation and deactivation. In
order to measure only the method dispatch and layer activation/deactivation
overhead, no actual updates on the screen are implemented, but instead a global
counter is incremented on each call of the Display.update() method to check
the correct number of issued updates at the end of a test run.

We have implemented the benchmark in ContextL and have run the bench-
mark on six different Common Lisp implementations. We have run two versions
of the benchmark, one without and one with layer activations/deactivations.



Implementation Platform Without Layers With Layers Overhead

Allegro CL 7.0 Mac OS X 2.292 secs 2.540 secs 10.82% slower

CMUCL 19b Mac OS X 0.7812 secs 0.7361 secs 6.13% faster

LispWorks 4.4 Mac OS X 3.0928 secs 3.1768 secs 2.72% slower

MCL 5.1 Mac OS X 2.3506 secs 2.6412 secs 12.36% slower

OpenMCL 0.14.3 Mac OS X 2.2448 secs 2.5066 secs 11.66% slower

SBCL 0.9.4 Mac OS X 0.8363 secs 0.7795 secs 7.29% faster

CMUCL 19a Linux x86 0.76 secs 0.836 secs 10% slower

SBCL 0.9.4 Linux x86 0.5684 secs 0.638 secs 12.24% slower

Fig. 9. The results of running the figure editor example in various Common Lisp im-
plementations.

In other words, we have compared the program in Fig. 3 that does not issue
any display updates with the program in Fig. 5 that continually switches the
DisplayLayer on and off: on to enable display updates and off to disable dis-
play updates for calls to proceed in the around methods of the DisplayLayer.
The main loop of the latter version looks as follows:

for (int i=0; i<1000; i++) {
for (Line line: lines) {

with (DisplayLayer) {
line.move(5, -5);

}
}
for (Line line: lines) {

with (DisplayLayer) {
line.move(-5, 5);

}
}

}

The main loop of the version without layer activations/deactivations just omits
the with blocks around the line.move() calls. It is important to note that the
version without layer activations/deactivations is essentially just a plain CLOS
program.

The results of the various runs on different Common Lisp implementations is
presented in Fig. 9. Each run creates a collection of 100 lines, with each line being
moved 1000 times. Time required for creating the collection of lines and filling it
is not taken into account. The entries in Fig. 9 are average measurements of five
runs. The respective platforms are an Apple PowerBook 1.67 GHz PowerPC G4
running Mac OS X 10.4.2 and a Dell PowerEdge 1600SC dual Xeon 2.8 Ghz run-
ning Linux 2.6.12. The overheads in runtime range from very moderate 2.72% in
LispWorks for Macintosh to still reasonable 12.36% in Macintosh Common Lisp
(MCL), especially when taking into account that we have an additional update
of a global counter for each call of line.move(). Two implementations show



the anomaly that the runs that repeatedly switch layers on and off are actually
faster than the runs without layers: On CMUCL 19b, the runs without layers are
on average 6.13% slower, and on SBCL 0.9.4 they are 7.29% slower. These two
environments are based on the same Common Lisp compiler, so this provides
an explanation for them showing similar efficiency characteristics. The perfor-
mance anomaly as such may seem surprising, but in fact such anomalies occur
frequently in performance benchmarks [25]. Obviously, factors beyond layer ac-
tivation/deactivation and method dispatch play a more important role for the
overall performance of our test program. Since applications typically spend less
than 10% of the overall time in call overhead [28], our numbers suggest an overall
estimated cost of 0.3% to 1.3% for inclusion and repeated switching of layers.
This is a noteworthy result, despite the fact that, of course, more benchmarks
are necessary to measure the effects of, for example, combinations of multiple
layers.

This excellent performance is evidently the result of a combination of finding
an appropriate runtime representation of layers and reusing existing optimiza-
tions for implementing object-oriented language constructs as described in the
previous section. It stems from folding all active layers into a single class that
represents current combination of active layers, and specializing the involved
methods on an implicit argument in addition to the receiver of a message. Ul-
timately, our implementation relies on efficient multiple dispatch as provided
by modern CLOS implementations. See [30] for a discussion of implementation
techniques for multiple dispatch in CLOS, and [10] for a general overview.

5 Related Work

5.1 Dynamic Aspect Weaving

The only aspect-oriented technologies we are aware of approaching our notion
of dynamically scoped activation of partial program definitions are AspectS [26,
27], LasagneJ [43], CaesarJ [34] and the Steamloom virtual machine [6]. They
all add constructs for thread-local activation of partial program definitions at
the base-program level. However, CaesarJ is limited in that it does not provide a
corresponding thread-local deactivation construct, and LasagneJ is even further
limited in that it restricts the use of thread-local activation to the main method
of a Java program [36]. Their lack of thread-local deactivation constructs makes
cflow-style constructs necessary in those approaches to implement the figure
editor example. Our approach allows its modular implementation without us-
ing AOP-style pointcuts. Global (non-thread-local) activation/deactivation con-
structs, like in CaesarJ and ObjectTeams [45] are not sufficient in this regard.
Steamloom provides undeployment of thread-local aspects, but cannot thread-
locally undeploy a globally active aspect.

With regard to efficiency considerations, it is important to note that the
straightforward technique to implement activation/deactivation by using thread-
local flags that are subsequently checked for each message impose a substan-
tial runtime overhead, as is reported in [19]. We are aware of two approaches



that specifically address efficiency improvements for cflow-style constructs and
thread-local aspect activation/deactivation respectively.

In [1], optimizations are described that reduce the number of flags to be
checked at runtime, with considerable efficiency improvements for cflow-style
pointcuts. However, the basic implementation as described above remains the
same. The main disadvantage of their approach is its reliance on a time-consuming
static global program analysis.9

In contrast, we gain high runtime performance without limiting applicabil-
ity of layers to those that have already been available at compile time. In our
approach, no dedicated global analysis is required.

The Steamloom virtual machine [6] is another attempt to reduce the overhead
of cflow-style poincuts. It implements a deploy statement that can be used to
activate aspects in its dynamic extent by modifying the Jikes virtual machine
for Java. It avoids the use of flags for checking applicability of aspects by recom-
piling the program at each context switch. That paper reports a considerable
efficiency improvement for the remaining part of the program execution in the
dynamic extent of a deploy block when compared to traditional implementation
strategies for similar cflow-style constructs. However, the deploy statement as
such is extremely expensive since it recompiles all parts of the program that
are affected by such aspect deployment. The benchmark results provided in that
paper suggest a performance decrease by a factor of 30, compared to their orig-
inal example program without any aspects.10 The Steamloom manual discusses
these “remarkable performance penalties” [5] in conjunction with the display
updating aspect in their version of the figure editor example which is triggered
by frequently entered and exited control flows.

The latest implementation of Steamloom explicitly addresses the above is-
sues and is described in [7]. That paper reports considerable performance gains
of cflow-style constructs, and would therefore be a viable candidate for an im-
plementation of ContextJ. As future work, we plan to explore this option and
compare the implementation approaches of ContextL and Steamloom.

5.2 Delegation Layers

Delegation layers, as in the prototype-based languages Slate [39] and Us [40] and
also combined into a class-based programming language in [38], are very similar
to our approach. As in ContextL, delegation layers define layers that group be-
havior for sets of objects in [39, 40] and for sets of classes in [38]. However, the
hierarchy of layers is globally fixed in [38]. One can select a layer from which
to start a specific message send, but all the other layers below are then prede-
termined by the original configuration of layers. In [39] and [40], the selection
and ordering of layers is not fixed but layers can be arbitrarily recombined in

9 For example, a simple AspectJ program that takes less than 5 secs to be compiled
with the plain AspectJ compiler can easily take more than 5 mins with their compiler.

10 See column “no aspect” compared to column “cflow/dynamic” in the Steamloom
row of Table 2 in that paper.



the control flow of a program. However, layer selection and combination has
to be done manually, there are no dedicated with/without constructs like in
ContextL. Providing these constructs as high-level abstractions allows for less
straightforward, but more efficient implementation strategies.

5.3 Other Related Work

Related work for special functions, precursors for combinations of methods from
different layers, is discussed in [15, 16]. Related work for special slots is discussed
in [16, 17]. Related work for delegation is discussed in [18].

The term Context-oriented Programming has already been used in two other
contexts. Gassanenko [22, 23] describes an approach to add object-oriented pro-
gramming concepts to Forth without turning it into an actual object-oriented
programming language. Instead, a notion of context is added that essentially
comes down to some form of first-class environments [24]. This allows code to
behave differently when executed in different environments. The description in
Gassanenko’s papers focuses on Forth-specific details and it is very hard to tell
how much overlap, if any, exists with our approach. For example, it is not clear
whether Gassanenko’s contexts must be fully defined or can be partial and com-
binable. The examples provided in [23] only cover fully specified, but no partial
contexts. Furthermore, Gassanenko’s contexts seem to cover functions only, nei-
ther state nor class definitions, the latter due to the explicit goal not to turn
Forth into a fully object-oriented programming language. Therefore, it seems
that those contexts are most likely similar to dynamically scoped functions [15],
one of our own precursors to ContextL.

Keays and Rakotonirainy [29] use the term context-oriented programming
for an approach that separates code skeletons from context-filling code stubs
that complete the code skeleton to actually perform some behavior. The claimed
advantage is that the code stubs can vary depending on the context, for example
the device some code runs on. A proof-of-concept implementation using Python
and XML is described. Their approach appears to be a reverse macro expan-
sion framework in which code skeletons and code stubs need to be combined
at runtime. Furthermore, there is no mention whether different combinations of
skeletons and stubs can coexist at the same time.

In contrast, ContextL is essentially an extension to an object-oriented ap-
proach that does not rely on runtime source code transformation. ContextL’s
root layer, whose behavior can be altered in other layers, can already be fully
operational, and different combinations of different layers can be simultaneously
active in multiple threads.

6 Conclusions

Several examples suggest the need for programming language constructs that
allow explicit association of the meaning of code not only with its position in
a static hierarchy, but also with the context in which it is running. This is



what we call Context-oriented Programming. The essential ideas are exemplified
by ContextL’s layers which are presented using a Java-style syntax. ContextL
allows for partial class definitions that belong to individual layers. Layers can
be activated and deactivated with dynamic extent.

We present an implementation of ContextL that relies on CLOS’s multiple
dispatch, and an analysis on how ContextL constructs can be implemented in
more mainstream programming languages such as Java. The experiments with
ContextL show that the concepts presented in the paper can be implemented
efficiently. A ContextL program with repeated activations and deactivations of
layers is about as efficient as one without.

We show that context-dependent layers can be used to implement the pop-
ular figure editor example in an elegant and very efficient way, without using
aspect-oriented features. Most notably, no cflow-style construct is necessary to
implement the full example because ContextL includes constructs not only for
thread-local activation, but also for thread-local deactivation of layers.
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