Continuous Code Reviews
A Social Coding tool for Code Reviews inside the IDE

Tobias Diirschmid
Hasso Plattner Institute, University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany
tobias.duerschmid@student.hpi.de

ABSTRACT

Code reviews play an important and successful role in modern soft-
ware development. But usually they happen only once before new
code is merged into the main branch. We present a concept which
helps developers to continuously give feedback on their source code
directly in the integrated development environment (IDE) by using
the metaphor of social networks. This reduces context switches for
developers, improves the software development process and allows
to give feedback to developers of external libraries and frameworks.

CCS CONCEPTS

-Software and its engineering — Integrated and visual develop-
ment environments; Collaboration in software development; s Human-
centered computing — Collaborative and social computing
systems and tools;

KEYWORDS

code review, code quality, social coding, feedback

ACM Reference format:

Tobias Diirschmid. 2017. Continuous Code Reviews. In Proceedings of
Programming ’17, Brussels, Belgium, April 03-06, 2017, 3 pages.

DOIL: http://dx.doi.org/10.1145/3079368.3079374

1 PROBLEM AND MOTIVATION

Performing code reviews is an important practice for professional
companies and open source projects [3, 8, 10, 14, 24, 26]. Reasons
are finding defects, improving code quality, discussing alterna-
tive solutions, transferring knowledge, and improving team aware-
ness [2, 24]. Recent studies confirmed, that review coverage and
review participation have a significant impact on code quality and
the correctness of software [20, 21, 27, 29].

But traditionally, code reviews are done only once before the
code is merged into the main branch [24]. This process does not con-
tinuously give feedback on code quality (especially of legacy code),
does not support questions of new developers concerning existing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Programming °17, Brussels, Belgium

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4836-2/17/04...$15.00

DOI: http://dx.doi.org/10.1145/3079368.3079374

code, and forces the developers to leave their IDE for commenting
on code.

Social networks like Facebook?, Twitter?, or Stack Overflow> en-
able interaction with any content by adding a comment or pushing
an ”I like” button. We transfer this metaphor to programming by
offering developers to comment on any code and to like clean code
snippets in the project using their IDE.

Code reviews of large changes (20 files or more) are less use-
ful [10]. Therefore, the proposed tool tries to continuously give
feedback just while reading a piece of code inside the IDE. This
approach lowers the barrier to comment on source code and in-
creases the amount of feedback. Furthermore, it can be enriched by
applying gamification techniques to commenting on source code
and finding bugs [19].

2 BACKGROUND

2.1 Code Reviews

A code review is a systematic examination of source code. Reviews
range from very informal (e.g., pair programming [7]) to very formal
(e.g., software inspections [1, 13]). Convergent peer reviews are
predominantly lightweight, flexible processes, that happen early,
quickly and frequently [24-27]. Therefore, we refer to code reviews
as informal peer reviews.

Currently the main activity of reviews changes from defect find-
ing to discussions about alternative solutions and long-term code
maintainability [10, 24]. Only about 15% of the peer review com-
ments point out possible defect while 50% address code quality [10].
Non-technical factors like reviewer load and activity, author expe-
rience, and the company structure significantly impact the review
outcome [5, 6].

One challenge developers face during code reviews is context
switching, because they have to understand another issue and stop
doing their current work [10, 18]. Switching from one problem
space to another reduces developers’ productivity and should be
avoided [22].

2.2 Social Coding

Social coding is the community-based development of software.
Social coding sites like GitHub* and BitBucket® enable substan-
tially more collaborations among developers [30] and shift the
focus of interactions to individual contributors and their activities
with electronic artifacts [11, 28]. Therefore, social coding is a new
and promising approach for improving the software development
process by encouraging the collaborations in the team.

2 https://twitter.com 3 https://stackoverflow.com

5 https://bitbucket.org

! https://facebook.com
4 https://github.com

https://facebook.com
https://twitter.com
https://stackoverflow.com
https://github.com
https://bitbucket.org

Programming ’17, April 03-06, 2017, Brussels, Belgium

3 WALKTHROUGH

This section describes a hypothetical scenario, how the proposed
tool can be used.

The developer Alice reads a piece of code relevant to her current
issue. She does not understand, why this is done like it is and adds
a comment on this piece of code. Because Bob did the last change
to this code, he gets informed about the new comment by a notifi-
cation in the IDE and via email. He opens the concerned method
and answers the questions. Alice recommends Bob to refactor the
code to directly reveal this intention. He does so and pushes the
done button of the comment in order to hide the comment of the
discussion. After Alice has finished her issue, Bob enjoys reading
her code and therefore pushes the ”I like” button of the new method
in order to help new developer getting to know the coding styles
of the project.

4 MAIN DESIGN DECISIONS

This section describes the design decisions we made during imple-
mentation of the tool in Squeak, a Smalltalk environment, using a
Ruby server for exchanging the comments.

4.1 Client-Server Architecture

In order to exchange the comments across the team, a central data
storage is needed. One simple solution would be to attach the com-
ments in custom fields of a commit of the version control software.
But this enforces users to perform a commit after commenting on
source code, which is impossible when the developer has no write
access to the code that was commented. Therefore, we implemented
this tool using a client-server architecture. The server manages the
comments in a database and the client creates, modifies and shows
the comments in the IDE.

4.2 Hiding Comments using an explicit Done
Button

Comments that have been discussed and resolved should not be
displayed to the developers any more. Our first intuition was, that
a comment should be hidden when the method was changed. But
this leads to problems when the change does not correspond to the
comment (e.g., the comment criticizes the name of a method and a
developer adds one call inside the method). Many other scenarios
could lead to hiding a comment that is still applicable. Therefore,
we decided to keep all comments until they are explicitly marked
as done by one developer.

5 RELATED WORK

Many projects working with feature branches perform code re-
views during pull requests before merging the changes into the
main branch [9, 12, 16, 23, 31, 32, 35]. Tools like CodeFlow [8], Mon-
drian [17], Gerrit [15], Phabricator [33], ClusterChanges [4] and the
Eclipse plug-in EGerrit® support these change-based code reviews.
In contrast, our concept gives feedback on the current state of code.
The reviews supported by these tools are made using a push model,
meaning that developers request reviews, while our tool uses a pull
model, meaning that developers can comment on any code without
request of the author. Hence, our concept allows to comment on

S https://www.eclipse.org/egerrit/

Tobias Diirschmid

library code and framework code and therefore to give feedback to
the developers of third party software. Furthermore, our feedback
is continuous and therefore enables new developers to comment on
old code. Similar to plug-ins like EGerrit, the proposed tool enables
the developers to stay inside their IDE and avoid context switches.
This provides a more self-sustaining environment which supports
the liveness of the development process. However, a dedicated
review process before merging changes into the main branch lets
the developers focus on issues raised up by the specific changes.
Therefore, we propose to use our concept in conjunction with pull
requests or other change-based reviews and not instead of it.

Discussions and questions about the source code traditionally
are done using mailing lists [34]. The recent emergence of ques-
tions & answers (Q&A) sites introduces gamification of archiving
reputation for answering questions [34]. But like pull requests, they
usually are not done inside the IDE but on a separate StackExchange
network like StackOverflow.

6 DISCUSSION

Our approach encourages continuous conversations about source
code quality, correctness, alternative solutions, and other topics.
It simplifies discussions between distant developers in large or-
ganizations or open source projects by providing a social coding
platform which forwards a comment automatically to the author
of the concerned code. Furthermore, we argue, that using this ap-
proach, many source code comments will move out of the code
base into the social coding comment database. This keeps the code
clean and focused.

Unfortunately, we did not find any solution for dealing with
developers working on the project but not having installed our
tool. This could lead to inconsistent states, for examples, when
this developer moves a method that is attached to a comment.
Therefore, this tool currently does only work correctly if all working
developers have installed our tool.

7 CONCLUSION

We proposed a social coding tool which helps developers contin-
uously giving feedback on code quality and potential mistakes.
This is one contribution for social coding towards a constructive
programming community with collective code ownership. Further-
more, it is a contribution for the vision of a self-sustaining IDE by
providing a tool for code reviews as one important process for code
improvements.

ACKNOWLEDGMENTS

I would like to thank Patrick Rein for his support and the HPI
software architecture group for the continuous feedback on the
project.

REFERENCES

[1] A Frank Ackerman, Lynne S Buchwald, and Frank H Lewski. 1989. Software
inspections: an effective verification process. IEEE software 6, 3 (1989), 31.

[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Chal-
lenges of Modern Code Review. In Proceedings of the 2013 International Conference
on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 712-721.

[3] Vipin Balachandran. 2013. Reducing Human Effort and Improving Quality in Peer
Code Reviews Using Automatic Static Analysis and Reviewer Recommendation.

https://www.eclipse.org/egerrit/

Continuous Code Reviews

[10]

[11]

[12]

[13]

[14]

[

[17]

[18]

[19]

[20]

[24]

[25]

[26]

[27]

In Proceedings of the ’13 International Conference on Software Engineering (ICSE
’13). IEEE Press, Piscataway, NJ, USA, 931-940.

Mike Barnett, Christian Bird, Jodo Brunet, and Shuvendu K. Lahiri. 2015. Helping
Developers Help Themselves: Automatic Decomposition of Code Review Change-
sets. In Proceedings of the 37th International Conference on Software Engineering -
Volume 1 (ICSE °15). IEEE Press, Piscataway, NJ, USA, 134-144.

Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. 2013.
The influence of non-technical factors on code review. In Working Conference on
Reverse Engineering (WCRE 2013). IEEE, 122-131.

Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. 2016.
Investigating technical and non-technical factors influencing modern code review.
Empirical Software Engineering 21, 3 (2016), 932-959.

Kent Beck. 2000. Extreme programming explained: embrace change. addison-
wesley professional.

Christian Bird, Trevor Carnahan, and Michaela Greiler. 2015. Lessons Learned
from Building and Deploying a Code Review Analytics Platform. In Proceedings
of the 12th Working Conference on Mining Software Repositories (MSR ’15). IEEE
Press, Piscataway, NJ, USA, 191-201.

Fabio Calefato, Roberto De Nicolo, Filippo Lanubile, and Fabrizio Lippolis. 2015.
Product Line Engineering for NGO Projects. In Proceedings of the Fifth Interna-
tional Workshop on Product LinE Approaches in Software Engineering (PLEASE
’15). IEEE Press, Piscataway, NJ, USA, 3-6.

Jacek Czerwonka, Michaela Greiler, and Jack Tilford. 2015. Code Reviews Do
Not Find Bugs: How the Current Code Review Best Practice Slows Us Down. In
Proceedings of the 37th International Conference on Software Engineering - Volume
2 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 27-28.

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding
in GitHub: Transparency and Collaboration in an Open Software Repository.
In Proceedings of the ACM 2012 Conference on Computer Supported Cooperative
Work (CSCW ’12). ACM, New York, NY, USA, 1277-1286.

Vincent Driessen. 2010. A successful Git branching model. (2010). http://nvie.
com/posts/a-successful-git-branching-model/

Michael E Fagan. 2001. Design and code inspections to reduce errors in pro-
gram development. In Pioneers and Their Contributions to Software Engineering.
Springer, 301-334.

Dror G Feitelson, Eitan Frachtenberg, and Kent L Beck. 2013. Development and
deployment at facebook. IEEE Internet Computing 17, 4 (2013), 8-17.

Google Inc. 2016. Gerrit Code Review. (2016). https://www.gerritcodereview.com/
Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory
Study of the Pull-based Software Development Model. In Proceedings of the 36th
International Conference on Software Engineering (ICSE ’14). ACM, New York, NY,
USA, 345-355.

Niall Kennedy. 2006. How Google does web-based code reviews with Mon-
drian. (30 November 2006). http://www.niallkennedy.com/blog/2006/11/
google-mondrian.html

Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. 2016. Code Review
Quality: How Developers See It. In Proceedings of the 38th International Conference
on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 1028-1038.
Rafael Lotufo, Leonardo Passos, and Krzysztof Czarnecki. 2012. Towards improv-
ing bug tracking systems with game mechanisms. In IEEE Working Conference
on Mining Software Repositories (MSR 2012). IEEE Press, 2-11.

Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2014. The
Impact of Code Review Coverage and Code Review Participation on Software
Quality: A Case Study of the Qt, VTK, and ITK Projects. In Proceedings of the
11th Working Conference on Mining Software Repositories (MSR '14). ACM, New
York, NY, USA, 192-201.

Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2016.
An empirical study of the impact of modern code review practices on software
quality. Empirical Software Engineering 21, 5 (2016), 2146-2189.

Mary Poppendieck and Tom Poppendieck. 2003. Lean Software Development: An
Agile Toolkit: An Agile Toolkit. Addison-Wesley.

Mohammad Masudur Rahman and Chanchal K. Roy. 2014. An Insight into the
Pull Requests of GitHub. In Proceedings of the 11th Working Conference on Mining
Software Repositories (MSR ’14). ACM, New York, NY, USA, 364-367.

Peter C. Rigby and Christian Bird. 2013. Convergent Contemporary Software
Peer Review Practices. In Proceedings of the °13 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE ’13). ACM, New York, NY, USA, 202-212.
Peter C. Rigby, Brendan Cleary, Margaret-Anne Storey, and Daniel M German.
2012. Contemporary Peer Review in Action. IEEE software 29, 6 (2012), 56—61.
Peter C. Rigby, Daniel M. German, Laura Cowen, and Margaret-Anne Storey.
2014. Peer Review on Open-Source Software Projects: Parameters, Statistical
Models, and Theory. ACM Trans. Softw. Eng. Methodol. 23, 4, Article 35 (Sept.
2014), 33 pages.

Junji Shimagaki, Yasutaka Kamei, Shane McIntosh, Ahmed E. Hassan, and Naoy-
asu Ubayashi. 2016. A Study of the Quality-impacting Practices of Modern Code
Review at Sony Mobile. In Proceedings of the 38th International Conference on
Software Engineering Companion (ICSE ’16). ACM, New York, NY, USA, 212-221.

[28

(30]

(31]

(32]

(35]

Programming ’17, April 03-06, 2017, Brussels, Belgium

Margaret-Anne Storey. 2012. MSR 2012 keynote: The evolution of the social
programmer. In IEEE Working Conference on Mining Software Repositories (MSR
2012). IEEE, 140-140.

Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu
Tida. 2015. Investigating Code Review Practices in Defective Files: An Empirical
Study of the Qt System. In Proceedings of the 12th Working Conference on Mining
Software Repositories (MSR °15). IEEE Press, Piscataway, NJ, USA, 168-179.

F. Thung, T. F. Bissyand, D. Lo, and L. Jiang. 2013. Network Structure of Social
Coding in GitHub. In 17th European Conference on Software Maintenance and
Reengineering (CSMR °13). 323-326.

Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of Social and
Technical Factors for Evaluating Contribution in GitHub. In Proceedings of the
36th International Conference on Software Engineering (ICSE "14). ACM, New York,
NY, USA, 356-366.

Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s Talk About It: Evalu-
ating Contributions Through Discussion in GitHub. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE ’14). ACM, New York, NY, USA, 144-154.

Alexia Tsotsis. 2011. Meet Phabricator, The Witty Code Review Tool Built
Inside Facebook. (7 August 2011). https://techcrunch.com/2011/08/07/
oh-what-noble-scribe-hath-penned-these-words/

Bogdan Vasilescu, Alexander Serebrenik, Prem Devanbu, and Vladimir Filkov.
2014. How Social Q&A Sites Are Changing Knowledge Sharing in Open Source
Software Communities. In Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing (CSCW ’14). ACM, New York,
NY, USA, 342-354.

Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. 2015. Wait for It: Determinants of Pull Request Evaluation Latency
on GitHub. In Proceedings of the 12th Working Conference on Mining Software
Repositories (MSR ’15). IEEE Press, Piscataway, NJ, USA, 367-371.

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://www.gerritcodereview.com/
http://www.niallkennedy.com/blog/2006/11/google-mondrian.html
http://www.niallkennedy.com/blog/2006/11/google-mondrian.html
https://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/
https://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/

	Abstract
	1 Problem and Motivation
	2 Background
	2.1 Code Reviews
	2.2 Social Coding

	3 Walkthrough
	4 Main Design Decisions
	4.1 Client-Server Architecture
	4.2 Hiding Comments using an explicit Done Button

	5 Related Work
	6 Discussion
	7 Conclusion
	References

