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ABSTRACT

Code reviews play an important and successful role in modern soft-
ware development. But usually they happen only once before new
code is merged into the main branch. We present a concept which
helps developers to continuously give feedback on their source code
directly in the integrated development environment (IDE) by using
the metaphor of social networks. This reduces context switches for
developers, improves the software development process and allows
to give feedback to developers of external libraries and frameworks.
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1 PROBLEM AND MOTIVATION

Performing code reviews is an important practice for professional
companies and open source projects [3, 8, 10, 14, 24, 26]. Reasons
are finding defects, improving code quality, discussing alterna-
tive solutions, transferring knowledge, and improving team aware-
ness [2, 24]. Recent studies confirmed, that review coverage and
review participation have a significant impact on code quality and
the correctness of software [20, 21, 27, 29].

But traditionally, code reviews are done only once before the
code is merged into the main branch [24]. This process does not con-
tinuously give feedback on code quality (especially of legacy code),
does not support questions of new developers concerning existing
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code, and forces the developers to leave their IDE for commenting
on code.

Social networks like Facebook?, Twitter?, or Stack Overflow> en-
able interaction with any content by adding a comment or pushing
an ”I like” button. We transfer this metaphor to programming by
offering developers to comment on any code and to like clean code
snippets in the project using their IDE.

Code reviews of large changes (20 files or more) are less use-
ful [10]. Therefore, the proposed tool tries to continuously give
feedback just while reading a piece of code inside the IDE. This
approach lowers the barrier to comment on source code and in-
creases the amount of feedback. Furthermore, it can be enriched by
applying gamification techniques to commenting on source code
and finding bugs [19].

2 BACKGROUND

2.1 Code Reviews

A code review is a systematic examination of source code. Reviews
range from very informal (e.g., pair programming [7]) to very formal
(e.g., software inspections [1, 13]). Convergent peer reviews are
predominantly lightweight, flexible processes, that happen early,
quickly and frequently [24-27]. Therefore, we refer to code reviews
as informal peer reviews.

Currently the main activity of reviews changes from defect find-
ing to discussions about alternative solutions and long-term code
maintainability [10, 24]. Only about 15% of the peer review com-
ments point out possible defect while 50% address code quality [10].
Non-technical factors like reviewer load and activity, author expe-
rience, and the company structure significantly impact the review
outcome [5, 6].

One challenge developers face during code reviews is context
switching, because they have to understand another issue and stop
doing their current work [10, 18]. Switching from one problem
space to another reduces developers’ productivity and should be
avoided [22].

2.2 Social Coding

Social coding is the community-based development of software.
Social coding sites like GitHub* and BitBucket® enable substan-
tially more collaborations among developers [30] and shift the
focus of interactions to individual contributors and their activities
with electronic artifacts [11, 28]. Therefore, social coding is a new
and promising approach for improving the software development
process by encouraging the collaborations in the team.

2 https://twitter.com 3 https://stackoverflow.com

5 https://bitbucket.org

! https://facebook.com
4 https://github.com
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3 WALKTHROUGH

This section describes a hypothetical scenario, how the proposed
tool can be used.

The developer Alice reads a piece of code relevant to her current
issue. She does not understand, why this is done like it is and adds
a comment on this piece of code. Because Bob did the last change
to this code, he gets informed about the new comment by a notifi-
cation in the IDE and via email. He opens the concerned method
and answers the questions. Alice recommends Bob to refactor the
code to directly reveal this intention. He does so and pushes the
done button of the comment in order to hide the comment of the
discussion. After Alice has finished her issue, Bob enjoys reading
her code and therefore pushes the ”I like” button of the new method
in order to help new developer getting to know the coding styles
of the project.

4 MAIN DESIGN DECISIONS

This section describes the design decisions we made during imple-
mentation of the tool in Squeak, a Smalltalk environment, using a
Ruby server for exchanging the comments.

4.1 Client-Server Architecture

In order to exchange the comments across the team, a central data
storage is needed. One simple solution would be to attach the com-
ments in custom fields of a commit of the version control software.
But this enforces users to perform a commit after commenting on
source code, which is impossible when the developer has no write
access to the code that was commented. Therefore, we implemented
this tool using a client-server architecture. The server manages the
comments in a database and the client creates, modifies and shows
the comments in the IDE.

4.2 Hiding Comments using an explicit Done
Button

Comments that have been discussed and resolved should not be
displayed to the developers any more. Our first intuition was, that
a comment should be hidden when the method was changed. But
this leads to problems when the change does not correspond to the
comment (e.g., the comment criticizes the name of a method and a
developer adds one call inside the method). Many other scenarios
could lead to hiding a comment that is still applicable. Therefore,
we decided to keep all comments until they are explicitly marked
as done by one developer.

5 RELATED WORK

Many projects working with feature branches perform code re-
views during pull requests before merging the changes into the
main branch [9, 12, 16, 23, 31, 32, 35]. Tools like CodeFlow [8], Mon-
drian [17], Gerrit [15], Phabricator [33], ClusterChanges [4] and the
Eclipse plug-in EGerrit® support these change-based code reviews.
In contrast, our concept gives feedback on the current state of code.
The reviews supported by these tools are made using a push model,
meaning that developers request reviews, while our tool uses a pull
model, meaning that developers can comment on any code without
request of the author. Hence, our concept allows to comment on
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library code and framework code and therefore to give feedback to
the developers of third party software. Furthermore, our feedback
is continuous and therefore enables new developers to comment on
old code. Similar to plug-ins like EGerrit, the proposed tool enables
the developers to stay inside their IDE and avoid context switches.
This provides a more self-sustaining environment which supports
the liveness of the development process. However, a dedicated
review process before merging changes into the main branch lets
the developers focus on issues raised up by the specific changes.
Therefore, we propose to use our concept in conjunction with pull
requests or other change-based reviews and not instead of it.

Discussions and questions about the source code traditionally
are done using mailing lists [34]. The recent emergence of ques-
tions & answers (Q&A) sites introduces gamification of archiving
reputation for answering questions [34]. But like pull requests, they
usually are not done inside the IDE but on a separate StackExchange
network like StackOverflow.

6 DISCUSSION

Our approach encourages continuous conversations about source
code quality, correctness, alternative solutions, and other topics.
It simplifies discussions between distant developers in large or-
ganizations or open source projects by providing a social coding
platform which forwards a comment automatically to the author
of the concerned code. Furthermore, we argue, that using this ap-
proach, many source code comments will move out of the code
base into the social coding comment database. This keeps the code
clean and focused.

Unfortunately, we did not find any solution for dealing with
developers working on the project but not having installed our
tool. This could lead to inconsistent states, for examples, when
this developer moves a method that is attached to a comment.
Therefore, this tool currently does only work correctly if all working
developers have installed our tool.

7 CONCLUSION

We proposed a social coding tool which helps developers contin-
uously giving feedback on code quality and potential mistakes.
This is one contribution for social coding towards a constructive
programming community with collective code ownership. Further-
more, it is a contribution for the vision of a self-sustaining IDE by
providing a tool for code reviews as one important process for code
improvements.
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