Proceedings of the 7th International Conference on Live Coding (ICLC 2023)
April 19th - 23rd - Utrecht, Netherlands

Asymmetric Performance in Virtual Reality and Code

Leonard Geier
Hasso Plattner Institute, University of Potsdam
leonard.geier@student.hpi.uni-potsdam.de

Paul Methfessel
Hasso Plattner Institute, University of Potsdam
paul.methfessel@student.hpi.uni-potsdam.de

Tom Beckmann
Hasso Plattner Institute, University of Potsdam
tom.beckmann@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Plattner Institute, University of Potsdam
robert.hirschfeld@hpi.uni-potsdam.de

ABSTRACT

Virtual reality enables a rich 3D user experience where immediate feedback can yield lively interactions. For live coding,
however, the rigid, text-based nature of source code is still a serious impediment to achieving such experience, as text
input in virtual reality is significantly slower than on a physical keyboard.

We present an asymmetric live-coding environment, in which a performance can benefit from both the fluid and flexible
direct manipulation capabilities of virtual reality and the expressive power of text-based code. Here, one performer
interacts with parameters and code blocks of the system using their hands in virtual reality, but is ultimately constrained
by the code defined by another performer immersed in a dedicated programming and runtime environment with full
access to the source of the system. We present a proof-of-concept implementation of such a system and describe future
directions for its development.

1 Introduction

A unique property of live coding is its deep and unlimited access to the computing resources for audio or visual produc-
tion (TOPLAP 2005). However, as a result, the live coding performer is in charge of the entire spectrum of parameters
that are involved in the performance, including scheduling or timing of notes.

In a proof-of-concept, we implemented a live coding environment where control over some parameters is given to a
second performer that is in virtual reality. The other performer remains in a traditional (“flat”) environment with access
to a computer monitor and a mouse and keyboard. There, they define and edit code blocks that can emit MIDI events.
The performer in virtual reality is in charge of activating or deactivating the code blocks by placing them in designated
areas in the virtual space. Each area has different, pre-determined properties that the performer can experiment with.
In addition, the distance of the code block from the ground controls its amplitude, thus allowing the performer to
dynamically fade in sequences. This asymmetric performance, with one performer in a flat development environment
and another in virtual reality, enables the performance to benefit from both the depth of expression enabled by live
coding music and visuals with established tools, but also the rich and direct means of interaction and feedback that
virtual reality affords.

As we want code that is currently playing to remain editable, our live coding environment reconciles changes from code
to the living object system that is emitting MIDI notes through a virtual DOM-like approach as popularized by React]S.

mailto:leonard.geier@student.hpi.uni-potsdam.de
mailto:paul.methfessel@student.hpi.uni-potsdam.de
mailto:tom.beckmann@hpi.uni-potsdam.de
mailto:robert.hirschfeld@hpi.uni-potsdam.de
Robert Hirschfeld
https://doi.org/10.5281/zenodo.7843896

Figure 1: Left: three active methods, assigned to two different instruments. Right: all five instruments, arranged in a circle.
In the center a code block that is not yet assigned.

This approach allows us to identify the fine-grained, minimal changes to the static source and apply them to the living
object system without need to restart a sequence.

In this paper, we will first discuss related work, then describe a walkthrough of a performance in our prototypical live
coding environment, as well as its properties and implementation, and finally outline future directions we think are
interesting for asymmetric performance between virtual reality and traditional environments. Source code and a demo
of the system are available on Github' under an open-source licence.

2 Related Work

The possibility of integrating virtual reality in the creation of programs (Elliott, Peiris, and Parnin 2015; Castillo et al.
2021; Geier et al. 2022) or for supporting art through code (Fischer 2016; Iannini 2016; Twomey et al. 2022) has been
considered before. A majority of the work, however, still relies on textual editing in virtual reality, which is typically
significantly slower without access to a mouse and keyboard. Through our approach, we aim to combine the speed at
which performers can express new ideas in code but also the benefits of continuous input in virtual reality.

Similarly, the use of one’s body to enhance a performance has been considered (Olaya-Figueroa, Zapata Cortés, and
Nemocén 2019). In this work, audience members were able to influence the performance by moving on a physical mat
and observing the result on projected screens or via the audio. Virtual reality has the potential to make the relation be-
tween one’s actions and the outcome even clearer, as a full digital space provides continuous and potentially immediate
feedback.

Systems based on or inspired by Croquet, a virtual, collaborative space (Smith et al. 2003), have been used in a variety
of forms in the context of live coding. Most similar to our work, it was used to allow a performer to click on a set
of objects in virtual reality, which in turn possessed behavior to trigger sounds (Suslov 2019). A performer outside of
virtual reality was able to modify and extend the behavior that was triggered. The system, in principle, would thus be
able to realize a similar setup as to the concrete setup we are presenting, where virtual code blocks act as a pluggable
behavior when attached to other objects.

Our MIDI React system is one means to ensure a performance can continue uninterrupted even though the code defining
the performance is being changed while it is running. It is thus similar to Sonic Pi’s 1ive_loop, or TidalCycles’ patterns
(Mclean 2014), and other approaches that enable live reloading. Functional reactive programming, to which React]S is
related, has also been applied to live coding (Murphy 2016). Our approach aims to appear familiar to developers who
know React]S and automates as much of the syncing issues as possible, presenting a less pure approach compared to
functional reactive programming-based systems.

3 Walkthrough

In this section, we outline a walkthrough of a performance using our prototypical asymmetric live coding system.

To prepare, the performers launch a MIDI synthesizer on the host system. We used QSynth in our experiments. Then,
we start our live coding environment. It consists of two parts: one, the Squeak/Smalltalk (Ingalls et al. 1997) live

*https://github.com/hpi-swa-lab/react-midi

https://github.com/hpi-swa-lab/react-midi

System Browser: MIDIExample

Dworphic-Core CMFHostConfigMidl|-- all -- + render:
React-Midi MIDIComponent midi components renderArpeggio:
Dworphic-Midi-World MIDIExample renderBass:
GReaSe-Test |—|—| renderDrums:
" i Teck l: instance class | -
browse ” senders ”implementors ” versions ” inheritance || hierarchy || variables | (source)
renderDrums: props '
£ System Browser: MIDIExample (v X+]
~ self loop: { Dworphic-Core CMFHostConfigMid | |-- all -- renderDrums:
self bassDrumFor: 1/ 4. React-Midi MIDIComponent midi components renderLine:
self accousticSnareFor: 1/ 4. Dworphic-Midi-World MIDIExample renderMelody:
self bassDrumFor: 1/ 4. GReaSe-Test - -
A n e T [instance class renderSbahn:
self accousticSnareFor: 1 /4. } : +
channel: (pI‘OpS at: #channel) browse || senders ||imp|ementur5|| versions ” inheritance ” hierarchy ” variables | (source)

renderMelody: props

tobe 3/12/2023 08:41 - Tom Beckmann - midi

~ self loop: 4
of: (MIDIScale pentatonic: self a5) * 2
for:1/8
channel: (props at: #channel)

tobe 3/12/2023 08:41 - Tom Beckmann - midi components - 1 implementor - in change sets:

Figure 2: The performer in the traditional, “flat” development environment has full access to pre-existing development tools.
Here, some MIDI components are open for editing within the Squeak/Smalltalk interface.

programming system (Rein et al. 2019), where one performer has access to the full source code driving the system. And
second, a small kernel of code written for the Godot game engine (Linietsky, Manzur, and contributors 2014), which
renders the visualizations defined on the host system. The Godot part is launched separately and either runs on the
host system as well, to integrate with for example SteamVR, or on a standalone headset that is connected to the host
system via USB cable.

The code driving the MIDI output is structured in separate methods that resemble React]S functional components, which
we call MIDI components, for example:

renderOctave: props
* self loop: {
self note: self c4 for:
self note: self c5 for:
self note: self c4 for:
self restFor: 1 / 4. }
channel: (props at: #channel)

_ a
~N N N
S~ b

Here, the performer has defined a loop of three-quarter notes and a rest. Note that MIDI channel, and thus the instru-
ment, to which the loop is being sent is parametrized via the dictionary of properties this MIDI component receives.

The performer in virtual reality is presented with five cylinders representing different instruments, arranged in a circle
around them. All MIDI components that the performer in the flat environment has defined appear clustered in the
center of the circle as live-updating 3D code blocks. The performer in virtual reality can now pick up any code block
using the virtual reality controllers and move them. As soon as a code block intersects one of the five cylinders, the
MIDI component starts playing on the corresponding instrument.

As the performer in the flat environment introduces new MIDI components, they too spawn at the circle’s center, such
that the performer in virtual reality can pick them up and assign them to an instrument. By quickly moving a held code
block in and out of a cylinder, the performer can let the code block activate for only one or multiple beats during the
live performance.

To introduce a new sequence gradually, the performer in virtual reality can begin intersecting the cylinder closer to the
floor. The lower quarter of each cylinder represents a 0% amplitude, the top quarter a 100% amplitude, and the center
50% allow a gradual increase or decrease of amplitude.

When the performer in the flat environment changes aspects of the sequences and saves the method, such as changing
the pitch of a note, the change becomes instantly live in the system, so the next time the beat of that note is hit, it will
play the adapted pitch. All loops are quantized against a global beats-per-minute value set by the performer in the flat

Squeak Available MIDI

Components
@ ---------- Midi React Piece P "l Godot React App
Channel and
Performer in Flat ¢ Amplitude ¢
. Assignment
Environment MIDI Godot
React Render System React Render System
MIDI TCP v
Synthesizer Godot .
Performer in
m\R Virtual Reality
h S—
i)

Figure 3: Overview of our architecture. The piece being live performed is rendered via our MIDI React system and subse-
quently output to a synthesizer. The application rendering the virtual reality interface is defined in a Godot React app in
Squeak, rendered via Godot, and output to OpenXR. The MIDI piece provides the VR application with the available com-
ponents, while the VR application communicates the assignment of channels and amplitudes back to the piece, which is
determined by the location of the components in virtual reality. One performer is interacting with the system via the VR
interface, the other via a “flat” or desktop environment.

environment, so changes do not lead to potentially annoying-to-fix timing issues, which may otherwise occupy most
of the time of the performer in virtual reality who is in charge of timing and scheduling.

Throughout the performance, the performer outside of virtual reality essentially presents offers to the performer within
virtual reality through the form of new loops but can also react to their decisions by modifying already running loops.
The performer in virtual reality is constrained by the offers given but can decide how to weave them into the musical
performance, perhaps previewing a MIDI component at a low amplitude or reading its code before deciding on when
and on which instrument to play it.

4 Setup and Implementation

Three systems are collaborating to create performances in our prototypical live coding environment: Godot for visual
output, a synthesizer such as QSynth for audio output, and Squeak/Smalltalk for controlling both. Both visual and
audio output is controlled through a system inspired by React]JS: Godot-React outputs Godot scene trees and MIDI-
React outputs an object tree describing the currently living MIDI playback nodes.

4.1 MIDI React

As performers change the piece’s code, we want all active aspects of the system to keep playing, if at all possible.
To enable this, one approach is to execute code fragments throughout the performance and save the system state in
objects. In this example from SuperCollider, a synth definition exposes properties that can be modified at a later point
to influence the synth’s behavior while it is running:

(

SynthDef("control", { arg freql = 440, freq2 = 443, mul = 0.12;
Out.ar(@, SinOsc.ar([freql, freq2l, @, mul))

}, [4, 51).add;

)

~aSynth = Synth("control", [\freql, 550, \freq2, 344, \mul, 0.11]);

~aSynth.set(\freql, 600, \freq2, 701, \mul, 0.05);

As another alternative, seen for example in Sonic Pi, performers define a 1ive_loop that every time it reaches the end
of its defined sequence may be updated with a changed definition.

live_loop :foo do
use_synth :prophet
play :el, release: 8
sleep 8

end

In contrast, in our React MID], all objects are created declaratively: all objects defined in code are always instantiated.
Objects that are no longer declared are automatically removed. The visible code as such always represents the state of
the system, unlike the above two examples where statements are executed, apply their effect, and can in principle now
be forgotten.

Performers can influence the system state in React MIDI by changing the code and saving, at which point the operations
to make their change, and only their exact change, live in the system. For example, changing the pitch in a loop will not
restart the loop, it will only modify the pitch of the note. Via data bindings, performers can have the system state evolve
without modifying constants. In the below example, an arpeggio is played starting from MIDI note c4 and progressing
chromatically to a higher pitch each measure.

renderArpeggio: props

| base |

base := self useState: self c4.

~ (self loop: {
self note: base get + @ for: 1 / 8.
self note: base get + 4 for: 1 / 8.
self note: base get + 7 for: 1 / 8.
self note: base get + 12 for: 1 / 8.
self note: base get + 7 for: 1 / 8.

self note: base get + 4 for: 1 / 8.
channel: (props at: #channel)) onMeasureStart: [base set: [:previous | previous + 1]1]

In the example, just before the start of each new measure, the notes in the running loop will all be assigned a new pitch;
everything else remains unchanged.

MIDI React creates and maintains an object tree that encapsulates the scheduling of MIDI note and control outputs. Our
prototype provides users with four primitive classes that they can combine and program against:

1. A Player object forms the root of the object tree. It controls the global beats-per-minute value and sends beat
and measure information to all its child nodes.

2. A Note object contains a duration, velocity, and pitch. It maps to corresponding MIDI noteOn/noteOff events.
Durations are given as fractions of a measure. A note with pitch 0 acts as a rest.

3. A Loop object takes sequences of note objects as its children and plays them in sequence based on their duration.
In addition, it is assigned a channel to which the notes should be sent.

4. A Control object sends a MIDI control event as part of a loop. Beyond that, it acts as a note with a zero duration.

As in React]S, after every state or code change, a description of the concrete structure of this object tree as described by
the code is produced. This description is then compared to the previous description to determine the minimal changes
that need to be applied to the actual living object tree. As a result, most programming errors will leave the living object
tree untouched and allow the system to keep playing using the last valid description. A proper restart of the system,
which is near instantaneous but will reset the clock, is only required if a programming error corrupted the system’s
state: the error did not manifest when building the object tree description but invalid data was inserted in some property
of the description, resulting in a corrupted live system.

4.2 Virtual Reality Controls

The controls for the performer in virtual reality are realized through standard facilities of the Godot game engine, with
little extra code for arranging objects, adding interactivity, and displaying code blocks. Code blocks display the up-to-
date source code as also seen in the Squeak programming system. We make them interactive by allowing the performer
to grab them by pressing the VR controller’s grab button.

The instruments are rendered through translucent cylinders, which inform our system of intersections with the code
blocks. When an intersection is detected, the MIDI component corresponding to the intersecting code block is assigned
the channel of the instrument in the MIDI React system. In addition, to provide feedback to the performer, we let the
block pulse in sync with the beats-per-minute to show that the code block is now active.

5 Conclusion and Future Work

In our tests, the prototype showed promise: the asymmetry of the setup allowed one person to concentrate on creating
low-level details of a composition in the form of the MIDI sequences, whereas the other was in control of the larger
picture, by scheduling provided sequences at different times. There are multiple aspects we believe are interesting for
future investigation.

At the moment, the instruments the circles are playing are static. Instead, they could either be defined in code or evolve
automatically throughout a performance. For example, the system could randomize the parameters of the instruments
at a specific interval, prompting the performers to adapt their performance. This may in particular require the performer
in virtual reality to adapt quickly to maintain a coherent soundscape.

In the prototype as described, the performer in virtual reality benefits primarily from a fast gesture for toggling and
assigning instruments to musical fragments. As position data in virtual reality provides continuous, analog values, it
would be interesting to not only map these to amplitude as in our prototype but for example, allow the performer in
virtual reality to edit constants in the code by selecting them and moving the controller. Thanks to our MIDI React
system, the changes would instantly become live, so it may for example allow the performer to slide around the cutoff
frequency of a low pass filter or any other values that are hardcoded.

Finally, the MIDI React system in its current state is limited by the few primitives we have defined for the prototype.
By taking inspiration from more mature systems for sequencing notes such as sclang, overtone, or pure-data we think
that it may be possible to identify a more flexible and powerful set of primitives.

References

Castillo, Victor Stefano Segura, Leonel Merino, Geoffrey Hecht, and Alexandre Bergel. 2021. “VR-Based User Interac-
tions to Exploit Infinite Space in Programming Activities” 2021 40th International Conference of the Chilean Computer
Science Society (SCCC), 1-5.

Elliott, Anthony, Brian Peiris, and Chris Parnin. 2015. “Virtual Reality in Software Engineering: Affordances, Ap-
plications, and Challenges” In Proceedings of the Conference on Software Engineering (ICSE) 2015, 2:547-50. ICSE ’15.
Piscataway, NJ, USA: IEEE Press. https://doi.org/10.1109/ICSE.2015.191.

Fischer, Michael. 2016. “Inception: A Creative Coding Environment for Virtual Reality, in Virtual Reality.” In Proceedings
of the ACM Conference on Virtual Reality Software and Technology (VRST) 2016, 339-40. VRST "16. New York, NY, USA:
ACM. https://doi.org/10.1145/2993369.2996354.

Geier, Leonard, Clemens Tiedt, Tom Beckmann, Marcel Taeumel, and Robert Hirschfeld. 2022. “Toward a VR-Native
Live Programming Environment” In Proceedings of the 1st ACM SIGPLAN International Workshop on Programming
Abstractions and Interactive Notations, Tools, and Environments, 26-34. PAINT 2022. New York, NY, USA: Association
for Computing Machinery. https://doi.org/10.1145/3563836.3568725.

Iannini, Luke. 2016. “Rumpus.” https://store.steampowered.com/app/458200/Rumpus/. https://store.steampowered.
com/app/458200/Rumpus/.

Ingalls, Dan, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997. “Back to the Future: The Story of Squeak,
a Practical Smalltalk Written in Itself” In Proceedings of the 12th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, 318-26. OOPSLA '97. New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/263698.263754.

https://doi.org/10.1109/ICSE.2015.191
https://doi.org/10.1145/2993369.2996354
https://doi.org/10.1145/3563836.3568725
https://store.steampowered.com/app/458200/Rumpus/
https://store.steampowered.com/app/458200/Rumpus/
https://store.steampowered.com/app/458200/Rumpus/
https://doi.org/10.1145/263698.263754

Linietsky, Juan, Ariel Manzur, and Godot Engine contributors. 2014. “Godot” https://godotengine.org/. https://
godotengine.org/.

Mclean, Alex. 2014. “Making Programming Languages to Dance to: Live Coding with Tidal” In FARM 2014 - Proceedings
of the 2014 ACM SIGPLAN International Workshop on Functional Art, Music, Modelling and Design. https://doi.org/10.1145/
2633638.2633647.

Murphy, Tom E. 2016. “A Livecoding Semantics for Functional Reactive Programming.” In Proceedings of the 4th Inter-
national Workshop on Functional Art, Music, Modelling, and Design, 48—-53. FARM 2016. New York, NY, USA: Association
for Computing Machinery. https://doi.org/10.1145/2975980.2975986.

Olaya-Figueroa, Juan, Laura Zapata Cortés, and Camilo Nemocén. 2019. “Full-Body Interaction for Live Coding.” In.
https://doi.org/10.5281/zenodo.3946303.

Rein, Patrick, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape. 2019. “Exploratory and Live, Pro-
gramming and Coding - A Literature Study Comparing Perspectives on Liveness.” The Art, Science, and Engineering of
Programming 3 (1): 1. https://doi.org/10.22152/programming-journal.org/2019/3/1.

Smith, D. A, A. Kay, A. Raab, and D. P. Reed. 2003. “Croquet - a Collaboration System Architecture.” In First Conference
on Creating, Connecting and Collaborating Through Computing, 2003. C5 2003. Proceedings., 2—9. https://doi.org/10.1109/
C5.2003.1222325.

Suslov, Nikolai. 2019. “LiveCoding.space: Towards P2P Collaborative Live Programming Environment for WebXR” In.
https://doi.org/10.5281/zenodo.3946356.

TOPLAP. 2005. “ManifestoDraft” http://toplap.org/wiki/ManifestoDraft. http://toplap.org/wiki/ManifestoDraft.

Twomey, Robert, Tommy Sharkey, Timothy Wood, Amy Eguchi, Monica Sweet, and Ying Choon Wu. 2022. “An Immer-
sive Environment for Embodied Code” In Extended Abstracts of the 2022 CHI Conference on Human Factors in Comput-
ing Systems. CHI EA "22. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3491101.
3519896.

https://godotengine.org/
https://godotengine.org/
https://godotengine.org/
https://doi.org/10.1145/2633638.2633647
https://doi.org/10.1145/2633638.2633647
https://doi.org/10.1145/2975980.2975986
https://doi.org/10.5281/zenodo.3946303
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1109/C5.2003.1222325
https://doi.org/10.1109/C5.2003.1222325
https://doi.org/10.5281/zenodo.3946356
http://toplap.org/wiki/ManifestoDraft
http://toplap.org/wiki/ManifestoDraft
https://doi.org/10.1145/3491101.3519896
https://doi.org/10.1145/3491101.3519896

	Introduction
	Related Work
	Walkthrough
	Setup and Implementation
	MIDI React
	Virtual Reality Controls

	Conclusion and Future Work
	References

