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Abstract. Aspect-oriented programming languages usually are exten-
sions of object-oriented ones, and their compilation target is usually the
(virtual) machine model of the language they extend. While that model
elegantly supports core object-oriented language mechanisms such as
virtual method dispatch, it provides no direct support for core aspect-
oriented language mechanisms such as advice application. Hence, current
implementations of aspect-oriented languages bring about insufficient
and inelegant solutions. This paper introduces a lightweight, object-
based machine model for aspect-oriented languages based on object-
oriented ones. It is centered around delegation and relies on a very dy-
namic notion of join points as loci of late-bound dispatch of functional-
ity. The model is shown to naturally support an important number of
aspect-oriented language mechanisms. Additionally, a formal semantics
is presented as an extension to the object-based § calculus.

1 Introduction

The progress of the aspect-oriented programming (AOP) paradigm [43,27] has
spawned a wide variety of AOP languages and corresponding implementations
[13]. Such languages are usually formulated as extensions of object-oriented
“base” programming languages; and they are usually implemented by expressing
AOP core mechanisms (such as advice application at join points) [22] in terms
of the base language mechanisms.

For example, AspectJ [42,4] is an extension of Java [31,47]. AspectJ compil-
ers generate Java bytecodes. The same holds for other Java-based AOP languages
and systems [3, 67, 52].

In other words, the machine models targeted by compilers for object-oriented
and aspect-oriented programs are the same. AOP languages’ core mechanisms
are transformed into a representation using only object-oriented mechanisms, be-
cause those are the only ones that the target machine understands. Consequently,
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representations of aspect-oriented core mechanisms tend to be “verbose” in their
object-oriented executable representation, as workarounds have to be found for
mechanisms that cannot be directly expressed by the target machine.

For instance, regard the application of a before advice at a method execution
join point. In AspectJ, it is transformed into two method calls that are inserted
at the beginning of each affected method: one call to retrieve an appropriate
instance of the aspect, and one to invoke the advice. The latter is implemented
as a method in a class representing the aspect [13, 35].

The transformation of aspect-oriented code to fit an object-oriented target
machine model introduces a semantic gap between the language’s expressions
and their realisation. It is especially apparent when regarding the target rep-
resentation of join points. Join points are well-defined points in the execution
graph of a running application [42,43, 27]: points at which functionality defined
in aspects is made effective. Transformation of aspect-oriented code to an object-
oriented target machine model usually represents them in the form of join point
shadows [35]: locations in application code where join points potentially occur
at run-time.

Most AOP language implementations follow an approach centered around
this notion, i.e., they regard applications during weaving solely in terms of their
static representation in code. This contradicts the accepted view on join points
as being inherently dynamic. In essence, conceptual and technical views on join
points and the realisation of attaching advice functionality to them are unnatu-
rally different: dynamic properties are ultimately expressed using static means,
such as code locations.

The aforementioned semantic gap has been observed earlier [9] and led to
the development of dedicated virtual-machine level support for AOP in the form
of the Steamloom VM [9, 34, 33]. While Steamloom set out to bridge the gap, it
has achieved less. On the one hand, several techniques dedicated to offer explicit
support for core AOP mechanisms have been devised [33,10,7]. On the other
hand, Steamloom operates at bytecode level, still expressing AOP mechanisms
targeting an object-oriented machine model. Recent advances in virtual machine-
level weaving support [7] still follow this direction.

To effectively bridge the gap, it is required to devise an aspect-oriented ma-
chine model that can directly be targeted by AOP language compilers. This
paper’s contribution is a first version of such a model.

As the foundation for the model, we propose the notion of virtual join points'.
The notion of a join point as a point in the execution flow of a program suggests
to regard it as a locus of late binding. This view has been mentioned several times
[42, 49, 14] but, to the best of our knowledge, not been consequently adopted in
implementations so far.

At every join point—seen as a locus of late binding of functionality or value
to messages—, dispatch takes place, even though it leads, in most cases, to the
execution of the join point’s “original” functionality. Dispatch is oriented along
multiple dimensions, i.e., relies on one or more different properties from the
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program state at the time a particular join point is reached. One such dimension
is equivalent to virtual method dispatch, where the dynamic type of the object
receiving a message send determines the operation to be executed.

In AOP, dispatch dimensions are manifold, and numerous dynamic properties
come into question, e.g., the current control flow in case of cflow, the current
thread, sending/receiving instance, or others. Of course, static properties, such
as the message sent in the case of call or execution join points are also viable
candidates.

Viewing join points as loci of late binding yields a consistent point of view,
enabling a fresh view on the execution of aspect-oriented programs, and on
the implementation of execution environments for aspect-oriented programming
languages. If a running application is regarded as a sequence of join points [42],
adopting the aforementioned notion suggests to also regard it as a series of
late-binding events, of virtual functionality dispatch. In the following, we will
elaborate on AOP implementations and how they adhere to the new view on
join points mentioned above.

Based on the notion of virtual join points, we propose a machine model for
AOP languages called delegation-based AOP that faithfully obeys the view on
join points as loci of late binding. It is formulated as an extension of a prototype-
based object model and uses delegation to achieve late binding.

It is important to note that the proposed model is indeed the core of a
machine model for AOP; it is not a programming language. The model can
be thought of as the internal representation of “AOP assembler” in a (virtual)
machine with dedicated direct support for AOP mechanisms.

The structure of this paper is as follows. In the next section, we introduce
the concept of virtual join points in detail. After that, in Sec. 3, we present the
execution model of delegation-based AOP in a purely prototype-based setting,
as well as a description of how the model can be extended to support, at the
language-implementation level, AOP in class-based languages. An operational
semantics is presented as an extension to the ¢ calculus [2] in Sec.4. Sec.5
discusses related work. Finally, Sec. 6 summarises the paper and outlines future
work.

2 Virtual Join Points

A join point is an inherently dynamic element of a running application, and it
is a locus of late binding. To facilitate late binding at join points, a dispatch
mechanism is required; this is similar to virtual methods in object-oriented pro-
gramming languages. To motivate this claim and further explain it, we shortly
describe virtual method dispatch.

Fig. 1(a) shows a program using no procedural abstraction at all: the code of
different concerns appears sequentially, possibly several times, in the program.
A choice between two concerns—depicted by the “either/or” alternative—is, in
such an approach, usually implemented using an if statement.
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Fig. 1. Sketch of code that uses (a) no procedures, (b) procedures that are early-bound,
(c) virtual methods that are late-bound.

When procedures are introduced into the program, each concern is refactored
into one procedure and the original code is replaced by a call to the procedure,
as seen in part (b). However, the procedure is still statically bound to the call
site and there is no variability of which procedure is called at run-time. The
concern choice is, in the procedure, also still explicitly represented.

Finally, in part (c), we show the program’s shape when virtual methods
are used instead of procedures. At each call site, there is a set of potential
target methods—which one is executed at run-time is only decided just before
the method is called. The explicit implementation of the either/or choice has
vanished and is replaced by an implicit process called dispatching.

The first programming style’s disadvantage is that code is replicated and
consequently not well modularised. The second style improves modularity by
refactoring replicated code into procedures, while dispatching is still coded in
the application. Finally, with virtual methods, the flexibility of late-binding is
provided implicitly by the execution environment.

We see a close resemblance between the concepts of procedures and virtual
methods on the one hand, and that of join points on the other. In fact, we claim
we can seamlessly replace procedure and method in Fig. 1 with join point, in the
sense of a semantic action to be executed (we will use the term join point action
to denote this action). When an advice is bound to a join point, the latter’s
semantic action consists of the advice execution as well as the original action if
it is not omitted, e. g., by an around advice that does not proceed.

From an aspect-oriented point of view, a program looks like in (a) if it is not
written in an AOP language: crosscutting concerns are tangled with the applica-
tion and scattered over it. AOP languages allow to localise these concerns, but
current implementations of these languages for the most part early-bind advice to
join points, sometimes guarded by conditional, so-called residual [42] logic. The
target code these implementations generate resembles part (b) from the figure.
Although conditional logic is generated by the AOP language implementation, it
is part of the application code. An implicit dispatch for join points in the target
code as in part (c) should be the goal of AOP language implementations.



A logical consequence is to regard every single join point as a locus of late
binding, i. e., as a virtual join point. An, in this regard, conceptually clean imple-
mentation of a run-time environment for aspect-oriented programming languages
implicitly represents join points as virtual join point “calls”. Each such call is dis-
patched at run-time and one target is selected according to the current run-time
state. The original join point action is, among possibly applicable advice, con-
tained in the set of potential targets. If no advice apply to the join point, there
is only one potential target: the default join point action. This is comparable to
a virtual method that is not overwritten.

We will now consider how powerful dispatch has to be. In object-oriented
programming languages, the standard case is to dispatch a method call only
based on the receiver object’s type. This can be realised by using a dispatch
table. Multi dispatch [20], where the receiver and argument types are taken into
account, requires extended mapping from multiple types to a method. Predicate
dispatch [26,50] is the most general notion, attaching an arbitrary predicate to
a method: if it evaluates to true, the method is executed.

When a virtual method table is used, only one run-time object can influence
dispatch, usually the method call receiver. However, AOP languages allow for
richer semantics in pointcuts, and pointcut expressions are usually more complex,
so that dispatch is oriented along more than one dimension. In the following,
we will briefly discuss which dimensions of dispatch are met in existing AOP
languages.

AspectJ [42, 4] provides dynamic pointcut designators cflow, target, this
and args, which specify the current control flow, dynamic type of receiver, active
or argument objects, respectively. Consequently, dispatch has to regard these.

Other AOP implementations like CaesarJ [3,17], JAsCo [67, 66], Association
Aspects [60], Steamloom [33, 34, 9], PROSE [56, 57, 52, 58] or EOS [59] also allow
for deploying an aspect, e. g., only in certain threads or for certain objects. As a
result, the current thread can be a dimension of dispatch, as well as the active
or receiver objects themselves—not only their types.

Even more dimensions are conceivable that hint at the capabilities of up-
coming and future AOP languages. If, for example, a pointcut language regards
the history of execution [66, 1, 55] or the interconnections of objects on the heap
[55], dispatch dimensions come into scope that are laborious to implement with
a purely object-oriented target machine. The generalised concept of virtual join
point dispatch, when realised at the core of an execution environment, delivers
a more powerful basis on which such languages can be built.

3 Delegation-Based AOP

In this section, we will first introduce the delegation-based AOP machine model
in its simplest form, i.e., in a purely prototype-based setting. After that, we
will show how the purely prototype-based model can be extended to support
class-based languages. A brief discussion and summary close this section.



3.1 Prerequisites

The machine model for AOP proposed here is based on the concepts of proto-
types and delegation [46]. The join point model’s granularity is that of messages,
i.e., each message send constitutes a join point. Both method invocations and
member accesses are equally modelled as messages sent to receiver objects. It
is this feature by which the model facilitates late binding at all join points: the
exact locus of late binding is message reception.

In Fig.2(a), a single object obj is shown. It has three slots responding to
the messages foo, bar, and baz. The implementation of the message bar sends
the message foo to self, i.e., to the very object that received the bar message.
The parent of obj—parent references are represented as arrows—is some object
further up the delegation chain of objects.

obj
foo=(...)

bar = (..., self foo, ...) obj
baz = (...)

(@)

Fig. 2. (a) A single object with an unspecified parent, (b) an object and its proxy.

In the context of the execution model for AOP proposed herein, an object is
not referenced directly, but through a proxy, as shown in Fig.2(b). The proxy,
by default, does not understand any particular messages, but transparently del-
egates all messages sent to it to the object it stands for. In the figure, obj is the
proxy object by the name of which the actual object actual_obj is known.

Technically, the proxy object determines the actual object’s identity at all
times: objects might be inserted to or removed from the delegation chain, but
since the proxy object will always remain up front, references to it will never
need to be updated.

Additionally, as calls are delegated up the delegation chain, self will always
be bound to the proxy object. For example, when bar is sent to obj, the call is
delegated to actual_obj, where the message is understood. Its implementation
sends foo to self. The latter, because bar was delegated to actual_obj, is still
bound to obj.

3.2 Introducing Aspects

We will now turn to showing how the common mechanism of delegation can be
used to late-bind advice to join points. Assume there are two aspects asp_a and
asp_b. Both affect different messages in obj: asp_a adds a before advice to bar
and an around advice to baz, asp_b adds an after advice to both foo and bar.
Both aspects are dynamically deployed at different moments in time while the
application is running.



Fig. 3 shows the situation after asp_a has been deployed. An additional ob-
ject, named asp_a_proxy, has been inserted in the delegation chain between the
proxy and the actual object. This so-called aspect proxy understands the two
messages augmented by the corresponding aspect, namely bar and baz.

actual obj
asp_a_proxy f00 = (...
bar = (<advice>, resend) bar = ( seI‘f"foo )
baz = (<advice>, resend, <advice>) T T

baz =(...)

Fig. 3. The aspect asp_a has been deployed.

The effect of this delegation chain modification is that all messages sent
to the actual object via its proxy are first understood by the aspect proxy,
bringing about the application of advice. From here on, the aspect proxy acts as
a smart reference (hence our usage of the term prozy [30]) to the actual object:
it performs actions of its own, as well as possibly addressing actual_obj. For
example, bar is understood in asp_a_proxy. The aspect proxy’s implementation
of the message applies advice functionality before it resends the message, i.e.,
passes on the message while self remains bound to the original receiver, obj.
This means that the original implementation of bar in actual_obj, when it is
eventually executed, correctly sends foo to obj.

Please note that the figures do not make any assumptions as to where advice
functionality is actually implemented; it may be given in-place, i. e., in the aspect
proxies themselves, or the latter may call other objects to execute advice.

Next, asp_b is deployed as well. The resulting situation is shown in Fig.4.
The aspect proxy for asp_b has been inserted in the delegation chain between
the aspect proxy for asp_a and the actual object.

asp_a_proxy asp_b_proxy actual _obj
obj bar = (<advice>, resend) foo = (resend, <advice>) foo=(...)
baz = (<advice>, resend, <advice>) bar = (resend, <advice>) bar = (..., self foo, ...)

baz =(...)

Fig. 4. Both asp_a and asp_b have been deployed.

The situation after the deployment of asp_b is especially interesting with
regard to the messages bar and foo. The former is subject to a before and an
after advice introduced by asp_a and asp_b, respectively. The use of delegation
in the machine model facilitates transparent advice application to foo: when
bar’s original implementation sends foo to self, the message is routed through
the proxy obj and both aspect proxies, leading to its interception in asp_b.

In the example, the aspect proxy of the last-deployed aspect was inserted
immediately before the actual object in the delegation chain, which means that
the first-deployed aspect applies first. Different orders of advice application are



straightforward to achieve by reordering aspect proxies in the delegation chain.
Aspect precedence can thus easily be dealt with: it basically is a matter of proxy
ordering.

The need for a proxy is now apparent. All modifications due to dynamic
weaving affect the delegation chain leading to the decorated object. Without the
proxy, all references to that object would have to be updated upon dynamic
aspect deployment. The proxy ensures a unique reference at all times, making
delegation chain modifications between itself and the actual object transparent.

The above examples employ before, after and around advice. In the figures,
all advice actions are subsumed under <advice>. It is obvious that delegation-
based AOP easily facilitates all three types of advice in that it treats before and
after advice as special cases of around advice.

A crucial part of all message implementations in aspect proxies is the ex-
ecution of the decorated join point. In delegation-based AOP, this is achieved
by resending the respective message to the next object in the delegation chain,
during which self still remains bound to the original message receiver.

3.3 Adding the Thread Dimension

So far, the description of the model has only shown how late binding is facilitated
along two dimensions, namely the identity of the receiver of a message send,
and the message itself. We will now show how additional dimensions can be
supported, and we will use thread locality as the first example for this.

Thread locality can be observed in existing AOP implementations in two
forms. On the one hand, aspects can be scoped to a single given thread, or a
number of threads. That is, their advice apply to join points only when the latter
occur in the execution of the respective thread(s). This feature is, for example,
directly supported in CaesarJ [3] and Steamloom [33]. On the other hand, thread
locality may imply that different (advice or residual [42]) functionality must be
executed depending on the thread at hand. For example, the AWED language
[51] allows for per-thread aspect instantiation. It also is a core requirement for
cflow residues to be thread-local, i.e., to maintain control flow information per
thread.

The current thread is thus added as a dimension of dispatch at join points.
The delegation-based AOP machine model allows for addressing both forms of
thread locality in a uniform way. To that end, the parent reference of each object
is defined to be a function of the current thread rather than a static reference.
That way, an object’s parent can be different, depending on the current thread.
Essentially, the delegation chain itself becomes a property of the thread.

For illustration, Fig.5 shows, again, the sample object actual_obj and its
proxy, obj. This time, two aspects asp_c and asp_d have been deployed. The
former introduces a before advice to foo that only applies in a thread T1, the
latter introduces a before advice to bar that applies globally.

In the figure, the dashed line with the annotation “T'1” denotes a delegation
link that applies in the thread T1, while solid lines denote unconditionally effec-



asp _c_proxy
foo = (<advice>, resend) actual_obj

- foo = (...)

@ bar = (..., self foo, ...)
asp_d_proxy baz = (...)

bar = (<advice>, resend)

Fig. 5. The aspect asp_c is scoped to the thread T1, asp_d applies globally.

tual links. It can be seen how asp_c_proxy delegates to asp_d_proxy, effecting
the application of asp_d in all threads.

3.4 Adding the Control Flow Dimension

Next, we will show how the introduced model mechanisms can be used to support
yet another dimension of dispatch, namely the current control flow. This basically
models the cflow construct known from AspectJ [42].

The sample aspect in this case, asp_e, applies a before advice to foo only
if this message is sent in the control flow of an execution of bar. In the model,
this is achieved using continuous weaving [32], i.e., the corresponding aspect
proxies are dynamically inserted into and removed from the delegation chain as
the control flow in question is entered and left. It is important to note that this
has to take place per thread: when the control flow is entered in T1 but not in
T2, only the delegation chain of T1 is to be affected.

Consider Fig.6 for illustration. In part (a), the situation is shown where
asp_e is deployed but no thread is currently in the control flow of executing bar.
Still, asp_e_cw_proxy—a continuous weaving prory pertaining to asp_e—has
been inserted in the delegation chain. It serves the purpose to dynamically deploy
the actual aspect proxies whenever a thread enters or leaves the respective control
flow. Note that the <activate> and <deactivate> functionality surrounds the
resend of the control-flow constituting message like an around advice.

Fig.6(b) shows the situation after bar has been sent to obj in a thread T1.
For that thread, the delegation chain is different now; sends of the foo message
are understood in asp_e_proxy, where advice functionality is applied. Note that
the continuous weaving proxy is not in the delegation chain for T1, so as to avoid
multiple insertions of the aspect proxy due to recursive entries of the control flow.

In Fig. 6(c), another thread, T2, has entered the control flow. The continuous
weaving proxy has reacted to this by simply adding T2 to the set of threads for
which the “parent function” of obj yields the aspect proxy asp_e_proxy. That
way, advice apply to foo in both T1 and T2, but in no other thread.

This approach to handling the actual aspect proxy guarantees that the aspect
proxy is inserted into the delegation chain at most once. The model’s property
of regarding parent references as functions allows for adding and removing par-
ticular threads to the set of threads for which the parent function yields the
aspect proxy. The aspect proxy is not removed until the last thread leaves the
respective control flow. This is taken care of in the continuous weaving proxy.
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[bar = (<activate>, resend, <deactivate>) }_> bar = Ioo se(l'f”f)oo )
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(a) control flow not yet entered

asp_e_proxy
foo = (<advice>, resend) actual obj
T .- foo=(...)
|2 bar = (..., self foo, ...)
- asp_e_Cw_proxy baz = (...)
bar = (<activate>, resend, <deactivate>) - 7

(b) control flow entered in T1

asp_e_proxy
foo = (<advice>, resend)

actual_obj
foo=(...)

T, T2 .-

bar = (..., self foo, ...)
- asp e cw_proxy baz = (..
obj bar = (<activate>, resend, <deactivate>)

(c) control flow entered in T1 and T2

Fig. 6. Dispatch along the control flow dimension through continuous weaving.

It is important to stress that no extra features were introduced to the model
in order to support the control flow dimension. A continuous weaving proxy is
technically identical to any other aspect proxy, or indeed any other object. The
only requirement is the capability to dynamically modify an object’s delegation
chain, while the delegation mechanism handles message flow.

3.5 Supporting Class-Based Languages

The delegation-based AOP machine model is originally based on prototypes. We
will now show how the model can easily be extended to support class-based
languages while retaining all benefits from the prototype-based version, such as
instance-local and thread-local aspect deployment.

It is easy to emulate the class-instance relationship known from class-based
languages in a prototype-based setting [64, 12]: any class is represented by an
object defining the class behaviour, while any instance of a class, represented
by an object whose parent slot points to the class, only carries its state. The
instantiation of an object is done by cloning a prototype.

In the extended delegation-based AOP model, objects have references to their
classes, and the way methods are invoked along these references can be modified
by modifying the path to the class. Fig. 7 shows how the basic principle works:
every object (c in the figure), as seen before, is represented by a proxy that
references the actual object (actual_c). The actual object contains instance-
specific attributes, i. e., member fields. The actual object in turn does not directly
reference its class, but it does so via another proxy, the so-called class proxy
(proxy_C) whose purpose will be clarified below. Finally, the class is represented
by an object (C) that defines the messages any instance of the class understands.

If an aspect asp_f with a class-wide before advice for the message C.bar
is inserted, the delegation chain is modified as seen in Fig.8. An aspect proxy
asp_f_proxy is inserted in between the class proxy and the class. The proxy



o}

foo =(...)
) bar = (..., self foo, ...)
baz =(...)

Fig. 7. Objects representing the class C and an instance thereof.

understands, exactly in the fashion of the execution model as presented above,
the message bar and applies advice before resending it.

(o]
foo = (...)

bar = (..., self foo, ...)
baz =(...)

Fig. 8. The aspect asp_f introduces a class-wide advice for C.bar.

So, the default class proxy is needed because inserting a class-wide aspect
without having this proxy would involve changing the parent links of all currently
existing instances of the respective class, as well as those of all instances of the
class that are created while the aspect is deployed. Hence, the class proxy exists
for the same reasons as the default object proxy introduced above.

There is no interference of the mechanisms for class-wide aspects with those
for instance-specific decoration. In fact, class-wide and instance-local decorations
can be seamlessly combined. The underlying mechanism is always delegation of
messages through proxies. In Fig. 9, there are two instances c1 and c2 of the
class C. Both are connected to their corresponding class object via the default
class proxy. However, there is another proxy on the delegation path for c1. In
fact, this proxy object implements the message bar to form aspectual behaviour,
but this new behaviour takes effect only if bar is sent to c1. In the same way,
the message foo is affected by a before advice—but this advice applies to all
instances of C because its place in the delegation chain is after the class proxy.

asp_h_proxy actual c1 [}
cl bar = (<advice>, resend) X=.. foo =(...)
y=.. bar = (..., self foo, ...)

baz = (...)
actual c2
X= .. [p_]‘%—g asp i_proxy
— y=... foo = (<advice>, resend)

Fig. 9. Two instances of C, where one is affected by the aspect asp_h, and a class-wide
aspect asp_i.

Proxies for instance decoration are always well isolated from proxies for class
decoration, as the latter are inserted between the class proxy and the class, while



the former are inserted between the decorated instance and the class proxy. Due
to this, instance decorations always dominate class decorations.

The concepts relating to extended support for dispatch dimensions intro-
duced earlier also apply in this setting: advice can be restricted to particular
threads by making the corresponding parent references functions of the thread.
This is illustrated in Fig. 10, where asp_g applies only in the thread T1.

proxy C

Fig. 10. asp_g applies only in the thread T1.

3.6 Introductions

The delegation-based AOP machine model does not only support pointcut-and-
advice-flavoured AOP [48]. We will now show how it easily facilitates introduction
of fields and methods.

Assume an aspect asp_int introducing a field £ and message msg to the class
C. The situation just after the aspect’s deployment is shown in Fig.11(b) (part
(a) shows the situation before deployment). An aspect proxy, asp_int_proxy,
has been inserted in the usual fashion in between the class proxy for C and C
itself. The proxy understands two messages, namely msg and f. No fields have
been added yet to either c1 or c2. This is done dynamically, as we will see next.

Above, it was mentioned that asp_int introduces a field f. However, the
inserted aspect proxy understands a message of that name which is realised as
a method. The purpose of this method is to facilitate the dynamic on-demand
introduction of fields to objects.

Consider what happens when the field £ of the object c2 shall be accessed:
the message f is delegated until it is understood in asp_int_proxy. The imple-
mentation of f inserts an instance-local aspect proxy for c2 which solely contains
the new field £, establishing the situation shown in Fig. 11(c).

f is now realised as a field, which has no method-like functionality to execute
and hence does not proceed, like advice implementations. Thus, whenever the
message f is sent to c2 in order to access the field, the message is understood in
asp_int_c2 and not delegated further up the delegation chain.

3.7 Discussion and Summary

The machine model for AOP introduced above is based on the well-known con-
cepts of prototypes and delegation, which have been augmented with the ad-
ditional property that parent references can actually be functions. In fact, the



actual c1

cl X=..

cl o c
=.. foo =(...)
, actual &2 proxy C bar = (..., self foo, ...) [ ...
< X= .. baz = (..)
y =... -
(a) nothing introduced yet
actual_c1
C
foo =(...)
bar = (..., self foo, ...) [ ...
baz = (...)

[}
foo=(...)
bar = (..., self foo, ...)
actual c2 baz =(...)
X=.. asp_int_proxy
y=.. f=(.)
asp _int c2 msg = (...)
f=..

(c) the field f has been introduced to c2

Fig. 11. Introductions in delegation-based AOP.

model allows for such a function to determine its result based on arbitrary param-
eters, not just the current thread, to realise dispatch along multiple dimensions.

The model, being object-oriented itself, can be used as an execution layer for
object-oriented programming languages. As seen in Sec. 3.5, class-based object-
oriented languages can easily be supported. We argue that the strengths of the
model fully come into play when languages are to be implemented that require
extensive use of late binding. Thus, it is especially well suited to support aspect-
oriented programming languages.

The model supports the pointcut-and-advice flavour of AOP [48] straightfor-
wardly. Apart from that, the model allows for implementing extended features.
Scoping aspect applicability to single instances comes as a natural feature of the
model. Yet, other features such as thread-local scoping and per-thread advice—
illustrated by the first and second examples, respectively, in Sec. 3.4—are also
supported in a unified way: both are done implicitly through parent functions.

Delegation-based AOP also provides very simple mechanisms for realising
different aspect precedence strategies. The order of aspect proxies in the delega-
tion chain may depend on several factors, such as the order in which deployment
occurs, or explicitly declared precedence. The model also naturally supports dy-
namic weaving through its reflective capabilities. Proxies can, at all times, be
dynamically inserted in and removed from delegation chains.

Set aside the features of pointcut-and-advice AOP, the model also supports
introduction of fields and methods to existing objects and classes. This is easily
achieved simply by exploiting the model’s inherent mechanisms. In a nutshell,



the delegation-based AOP machine model represents a uniform approach to im-
plementing AOP, based on some simple yet powerful mechanisms.

A proof-of-concept implementation for the delegation-based AOP machine
model has been developed as well. Emphasising elegance and simplicity more
than efficiency, the relatively young, dynamic Io programming language [37] was
used for this purpose. Regarding an efficient implementation, we refer to ex-
isting work on efficiently implementing dynamic languages that was achieved
in the course of implementing the Self language [65, 18,61] and the Strongtalk
Smalltalk implementation [63]. In those projects, very efficient compiler technol-
ogy for dynamic languages has been developed. Adopting their achievements for
delegation-based AOP is a core topic of future work.

4 Semantics

We will now introduce the ¢ [2] calculus, followed by a number of modifications
and extensions in order to use it as a formal foundation for our model.

4.1 The § Calculus

¢ is a simple calculus providing a formal foundation for an imperative, object-
based system with delegation. It is defined through an operational semantics
function ~-s, which is a finite mapping of expressions and stores onto pairs of
addresses and stores:

~50 Exp x Store i, Address x Store

A store is basically a lookup table which maps addresses to objects, and
stores the self pointer:

Store = ({self} — Address) U (Address v g, Obj)

Finally, an object contains a list of addresses, pointing to its parents (§ indeed
allows for multiple parent objects), which are each associated with an identifier,
as well as a list of method names with their bodies, and are represented as
o=[dy=1t1...dx = tg]|m1=0b1...my =by]:

Obj = (Delegatel D — ¢;, Address) U (MethodID v+ fy, Exp)

A number of operations are defined as well which determine the way expres-
sions are constructed, and of which the following are most relevant in the context
of this paper:

(Select)
(Clone) a,o ~5 L, 0
(Addr) a,0 ~g L0’ Look(d’,1,m) = {b}
/' ¢ dom(c”) o’ =o'[self — (]
LT~ L, O o’ =0V — d'(1)] b,a" ~s5 i 0’
clone(a), o ~st', 0" """ =" [self — o(self)]

a.m,o ~g5 1, 0"



(Addr) is the basic case, where an address evaluates to itself without mod-
ifying the store. (Clone) performs a copy-by-value of an object’s parents and
methods, and stores the result at a new address. Finally, (Select) models mes-
sage sending and makes sure self is initialised to point to the message receiver.
The Look function basically looks up the method body associated with m, either
in the receiver object itself, or in one of its parents. It is assumed that only one
candidate is found.

The delegation semantics are thus incorporated in the Look function, but as
the latter will be modified to better fit the context of this paper (cf. Sec. 4.2), its
original definition is omitted here.

4.2 Modifications and Extensions for Delegation-Based AOP

For ¢ to be convenient as a formal foundation for delegation-based AOP, a num-
ber of adaptations need to be made. First of all, a simplification can be applied,
in that it turns out to be sufficient for each object to have maximally one parent
instead of n. This is because (Select) will exhibit the same behaviour if a mes-
sage is sent to an object [dy = tq,d2 = tp]] . ..] as if the same message were sent
to [d1 = tql| - ..] where o(tq) = [di = w|| - - .]. Indeed, in both cases, lookup will
check b’s methods only after it failed to find a suitable candidate in a. However,
in order to allow an object’s parent to vary depending on the context (for ex-
ample the current thread), a function Del is introduced, which associates every
object with another function. The latter, in turn, determines the object’s parent
based on the context. Consequently, parents will no longer appear in an object’s
representation:

Del : Address — g, (Context — Address)
0=[my =by,ma=0by..]

Note that the Context domain is not defined in more detail in order to allow it
to be used for any information considered applicable in a particular situation.
Furthermore, the notation Del, will be used from now on as an abbreviation for
Del(r) and, in case Del(r) is a constant function, even for that constant value.
For convenience, Del, is assumed to be stored together with the actual object
in the store at address ¢.

Next, (Clone) should be updated to make sure objects are automatically
associated with a proxy, and can be referenced through this proxy:

(Clone)
a,0 ~gt,0
/' ¢ dom(c”)
o’ =o'/ — d'(1)]
V" ¢ dom(c’)
o =o"[/" — ([]; Del,» (context) = 1')]

" "
clone(a),o ~s5 " o




Note that Del,~ is set to be a constant function here. This means that the
parent of the proxy object will always be the actual object, regardless of context.
Furthermore, the proxy object has got no methods of its own. Thus, all messages
sent to it are automatically delegated to its parent.

Also note that the semantics of (Clone) as defined here may not be suitable
in all cases, for example to create an aspect proxy object which does not need
another proxy of its own. For such cases, the old (Clone), or even yet another
variant, might be more appropriate. The current version demonstrates what it
means for a proxy to be attached to an object, as well as how and when this
might be realised.

As stated before, delegation semantics are incorporated in the Look function,
which is now adapted to take the Del function into account. More specifically,
it should look for a method m in the object at address ¢ or any object found
by recursively applying the Del function, and return its body together with the
address of the object where m was eventually encountered:

Look(o,1,m) = {{(bw)} ifo()=[..m=b..]

Look(o, Del,(context), m) otherwise

Note that Look(c,t,m) is undefined if at some point an application of Del, is
undefined as well. This will happen in case an object has no parent.

At this point, delegation semantics are suitable for delegation-based AOP.
The next issue is that there is no resend mechanism yet. In order to incorporate
this, two new pseudovariables msg and cur are introduced, which, similarly to
sel f, are only relevant during a message send:

(Var)

self,o ~so(self),o
cur,o ~s o(cur), o
msg,o w3 O(mag), o

Indeed, a resend is only possible within the body of a method, and msg and
cur respectively serve to hold the name of the message currently being handled,
and the address of the object where the body of this message was found by
the Look function. Consequently, (Select) is now modified to correctly initialise
these new variables, and the definition of a store is updated as well:

(Select)
a,o ~g L0
Look(a’,t,m) = (b, tq)
o = d'[self — i][msg — m][cur — 4]
b7 0.// ~3§ Ll7 0.///

o' = o"[self — o(self)][msg — o(msg)][cur — o(cur)]

a.m,o ~gs i, o

({self} — Address) U ({cur} — Address)J

Store = ({msg} — MethodID) U (Address — pi, Obj)



At this point, (Resend) can be modelled to select msg on the parent of cur,
while self is not modified, and thus remains bound to the original receiver:

(Resend)
Look(o, Del .y, (context), msg) = (b, tq)
o' = oleur — 4]
b,o’ ~s i, 0"

o = o"[cur — o(cur)]

n

resend, o ~g5 1,0

Note that cur is updated during (Resend). This is necessary to cover the
case where the evaluation of the newly found b triggers yet another resend.

Finally, a couple of dedicated aspect-oriented operations can be defined. It
turns out that deploying an aspect is just a matter of rewiring a couple of parents,
while aspect undeployment boils down to resetting this rewiring:

(Deploy Aspect)
a,o ~g L0
asp,a’ ~s i "

/ ! "
0" = ¢"[Del, (context) = Del,] a%),_a PACAS B
""" — 5" [Del, (context) = ] 0" = ¢"[Del,(context) = Del,/]

deploy(asp a) 0 g 1,0 undeploy(asp, a),a‘ ~g 0"

(Undeploy Aspect)

a,o ~g L0

4.3 Example

As an example, consider the scenario shown in Figs. 2(b) and 3 from Sec. 3. We
start out with an object obj = o(top;) = [] and Del,,,; = tactual_ob; Where
0 (tactual_obj) = [foo = ...,bar = [...,self foo,...],baz = ...]. Thus, obj is a
proxy object with its parent pointing to actual_obj.

Next, aspA is deployed using (Deploy Aspect):

/
deploy(l/aspfh Lobj)7 g ~5 Lobj, O

The Del,,,,; function is now set to always evaluate to the constant value ¢gsp4,
but this need not necessarily be the case. The slightly more advanced situation
where aspA is applied locally to thread T; (cf.Sec.3.3) is easily covered by a
minor change to the (Deploy Aspect) operation, where Del is set to the
following instead (¢ is the current thread):

Lobyj

_ Jwspaift="T1
Delbob_j (t) = {Udf otherwise

Of course, in case t # T7, the result might just as well be yet another object,
rather than undefined. The latter models the case where obj has no parent.



5 Related Work

The discussion of related work is done in two parts. First, we will focus on work
that also supports the notion of join points as loci of late binding. We will then
turn to presenting implementations or implementation ideas that exploit mecha-
nisms resembling an actual late-binding approach as presented in the preceding
sections.

5.1 Join Points as Loci of Late Binding

Join points as loci of late binding have been alluded to in numerous publications
presenting formalisms for aspect-oriented programming. A number of these ap-
proaches regard join points as events [68, 15, 25, 29, 28] to which advice essentially
react. While this can be regarded as a form of late binding, the notions of join
points used in the aforementioned publications still differ from our idea in that
they assume that certain join points are selectively activated as events during
a weaving step [25], or that additional conditional logic is executed whenever
such an event is signalled to determine whether advice are actually applicable
[68]. The application is under observation, it is being monitored by some entity
pertaining to AOP infrastructure. Conversely, our model regards all potential
join points as being “active” and thus implicitly as loci of late binding at all
times. Moreover, additional conditionals are not required in delegation-based
AOP because late binding is done implicitly through the appropriate insertion
of proxies in the delegation chain.

In the AOSD-Europe project, a generic meta-model for aspect-oriented pro-
gramming languages has been developed [14]. It explicitly regards join points
as points where advice functionality may be late-bound. The model comes with
a prototype implementation in the form of an interpreter, which checks for ad-
vice applicability at all join points it encounters. This corresponds to an “eager”
checking for the applicability of advice. Application of advice is thus less implicit
than in delegation-based AOP.

Some formalisms explicitly address dispatch mechanisms to model join points
and advice application at them [53,45,38]. The FRED language [53] combines
concepts from object-oriented and aspect-oriented programming as well as pred-
icate dispatch [26]. This approach is close to delegation-based AOP regarding its
derivation. Still, it requires the definition of conditions for dispatch at application
level instead of applying dispatch implicitly, like our model.

Lammel introduces method call interception (MCI) as a fundamental lan-
guage mechanism [45]. MCI allows for superimposing method calls with addi-
tional functionality. The MCI model is, however, restricted to method calls only
and does not aim at representing a general model for AOP.

The calculus of untyped aspect-oriented programs presented by Jagadeesan
et al. [38] is very closely related to the delegation-based AOP model presented
in this paper. It models all advice applying at a join point as ordered units of
behaviour, each of which is essentially an around advice. Such an advice unit
closely resembles an aspect proxy in delegation-based AOP. Advice are also



implicitly applied at join points. Only method calls, which can be expressed
using message sends, are considered as join points in the calculus.

The parameterised aspect calculus [19] regards each reduction step as a po-
tential join point. Still, the semantics consults a pointcut language element at
all reduction steps, leading to eager explicit checking for advice applicability like
observed above for the AOSD-Europe meta-model.

The common aspect semantics base (CASB) [23] regards every instruction
as a potential join point, applying a two-staged function at all instructions.
The first function determines whether the current instruction may be subject
to decoration with advice. If so, the second function is applied to check whether
the present dynamic state calls for applying advice at the join point at hand.
An instruction is hence treated like an AspectJ join point shadow. The view on
a running application therefore closely resembles the one found in AspectJ.

In Pluggable AOP [44], aspect language mechanisms are modelled as mixins
that transform interpreter base mechanisms. Said mixins are represented in the
form of proxy objects, and composition with the base interpreter functionality
is achieved through proxy insertion in delegation chains that are part of the
interpreter’s logic. The similarities with the machine model for AOP presented
in this paper are of a technical nature. Pluggable AOP augments interpreter
base mechanisms by means of proxies and delegation. Conversely, delegation-
based AOP has proxies and delegation as the interpreter’s core mechanisms. In
other words, Pluggable AOP transforms the interpreter, whilst delegation-based
AOQOP transforms application structures subject to execution by a never-changing
interpreter.

Ossher [54] proposes to represent application objects as “constellation]s] of
a number of fragments” that each contribute part of an object’s functionality.
Fragments delegate to each other in case a piece of desired functionality is not
implemented by one. Crosscutting concerns can be dynamically woven in and
out by adding fragments to, or removing them from, the delegation chain. His
proposal is a suggestion for research directions for virtual machine support for
concern composition. The machine model presented herein obviously matches
with these ideas.

5.2 Related Implementations

There are several actual AOP language implementations that use techniques
related to late binding at join points. None of them is as radical as the model
presented in Sec. 3, but certain resemblances exist.

Envelopes as in envelope-based weaving [16] wrap potential join point shadows
in methods introduced at load-time. They closely resemble virtual join points but
are limited in that they basically just map virtual join points to virtual methods.
Some AOP implementations utilise a less consequent form of envelopes to realise
dynamic weaving. AspectWerkz [5,11] does not replace all potential join point
shadows with envelopes, but those that are, at class loading time, known to be
in the scope of aspects that may be put to use during run-time. Each join point
shadow is replaced with a call to a method in a dedicated so-called join point



class. Dynamic weaving is achieved by replacing said methods using HotSwap
[24,41]. AspectWerkz’ approach is described in more detail in [13]. JAsCo [67,
66], in its run-time weaver [39], follows a similar approach.

One variant of PROSE [57] decorates each join point shadow with advice
dispatch logic, effectively realising a powerful dispatch mechanism. However, the
approach brought about severe performance penalties, as the chosen implemen-
tation strategy was nothing like virtual method dispatch. In fact, advice dispatch
logic was implemented as an unconditional callback into the AOP framework of
PROSE, leading to the execution of costly functionality at all join points.

Implementing AOP languages using prozxies is an approach chosen by numer-
ous AOP frameworks, of which Spring AOP [40, 62] is one of the most popular.
Frameworks like Spring AOP create proxies that replace the original application
objects and implement the same interface as the latter, but apply advice in their
implementations of the respective methods. Proxy-based AOP is technically close
to the delegation-based AOP model for yet some more reasons. Aspect prece-
dence is easily expressed by ordering proxies appropriately. Also, proxies can be
applied—introduced and withdrawn—dynamically, allowing for dynamic weav-
ing. The main difference between proxy-based and delegation-based AOP lies in
the level at which the approaches are realised: proxy-based AOP implementa-
tions operate at application level. That is, all AOP-related operations are part
of the running application, imposing significant performance penalties on join
points where advice functionality applies [33]. Conversely, delegation-based AOP
is intended to be realised at the level of the run-time environment, promising
significantly better performance.

The composition filters [6] approach is related to proxies in that filters are
applied to messages. Filters may impose additional functionality on message
evaluation, thereby effecting advice. Execution of such functionality may also
depend on conditions specified in filters. Composition filters relate to delegation-
based AOP in the same way proxies do: filtering is specified at language instead
of machine level.

Finally, there are implementations that do not affect application code as
such, but that manipulate meta-level entities to let aspect-related constructs
take effect. Systems falling in this category are AspectS [36] and context-oriented
programming (COP) [21]. Their relation to delegation-based AOP is apparent:
both do modify system-internal dispatch data structures, such as virtual method
tables or method dictionaries, to augment functionality at join points. The main
difference to delegation-based AOP lies in that they do not explicitly regard all
join points as loci of late binding—this characteristic is introduced by installing
aspects (in AspectS) or activating layers (in COP).

6 Summary and Future Work

Based on the notion of join points as loci of late binding, we have presented a ma-
chine model for the implementation of aspect-oriented programming languages
called delegation-based AOP. The model not only facilitates the implementation



of the pointcut-and-advice AOP flavour, but also that of numerous other AOP
features, such as aspect scoping (to threads and instances) or introductions. The
model is simple and exploits few simple basic concepts—delegation, prototypes,
parent reference functions—to achieve all of its goals.

Future work will focus on several issues. An implementation of the model is
to be developed in the form of a virtual machine for a high-level aspect-oriented
programming language. The machine will support some standard bytecode set
(e.g., Java or Smalltalk), but will moreover offer dedicated bytecode instruc-
tions supporting the core aspect-oriented features of the machine model. Exist-
ing aspect-oriented programming languages are to be mapped to it by means
of compilers that target the machine’s instruction set. To achieve good perfor-
mance, existing work on providing efficient run-time environments for dynamic
languages is going to be used as a foundation.
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