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Version Control Systems (vcss) allow developers to manage changes to
software artifacts. Developers interact with vcss through a variety of client
programs, such as graphical front-ends or command line tools. It is desir-
able to use the same version control client program against different vcss.
Unfortunately, no established abstraction over vcs concepts exists. Instead,
vcs client programs implement ad-hoc solutions to support interaction
with multiple vcss.

This report presents Pur, an abstraction over version control concepts
that allows building rich client programs that can interact with multiple
vcs. We provide an implementation of this abstraction and validate it by
implementing a client application.
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1 Introduction

Version Control Systems (vcss) help developers to manage changes to
software artifacts. They allow developers to document, share, and merge
changes. These tasks are critical to the success of software projects, because
they are both frequently recurring and prone to human error. Software
is built by teams of developers who work in parallel on the same source
code. The need to share and merge changes is thus omnipresent. Without
the assistance of vcss, developers can fail to communicate their changes
and must merge changes manually; changes become untraceable. vcss
address these problems by allowing developers to share their changes in a
structured and traceable way. Changes are recorded in the vcs and conflicts
can be solved by considering the history of changes. The potential for error
is thus reduced.

Developers interact with vcss through a variety of client programs. Such
client programs include command line interfaces, graphical front ends,
Integrated Development Environments (ides), project management web
applications, or information extraction tools, such as refactoring reconstruc-
tion systems. These client programs enhance the vcss by use-case specific
functionality, for example by providing a certain kind of user interface, or
by extracting certain data.

It is desirable to use the same version control client program against dif-
ferent vcss. The benefits provided by a client program are often applicable
across different vcss. For example, user interfaces that are provided by
ides, such as those to browse a project’s history or to show differences be-
tween versions are, to a large extent, independent of the concrete vcs being
used. This applies to other client programs, such as project management
web applications or graphical front-ends.

Unfortunately, no established vcs abstraction exists. Client programs
that want to interact with multiple vcss face the difficulty that vcs inter-
faces differ in terminology and concepts. These differences are addressed
by ad-hoc solutions that cannot be re-used across client programs. This
report contributes to the solution of this problem with the following:
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1.1 Contributions

An Abstraction for Version Control We describe Pur, an abstraction for
vcss that captures concepts common to the vcss Subversion, Git, and
Mercurial. This abstraction is intended to maintain a sufficiently rich set of
concepts so as to serve as a basis for generic vcs client programs.

Version Control Abstraction in Newspeak We validate the practicabil-
ity of the abstraction by implementing it for Git and Mercurial in the
Newspeak programming language. Furthermore, we describe how to im-
plement it for Subversion.

Version Control Application in Newspeak We validate the applicabil-
ity of the abstraction by implementing a version control application that
provides a user interface to interact with Pur.

1.2 Report Structure

The report is structured as follows: First, chapter 2 analyzes and compares
the three vcss Subversion, Git, and Mercurial. Based on this analysis it
identifies requirements that must be satisfied by a common abstraction.
The resulting common abstraction Pur is presented in chapter 3. Next,
chapter 4 shows how this abstraction can be implemented in the Newspeak
programming language. Chapter 5 describes the implementation of the
version control application PNS that makes use of the Pur implementation.
Based on these implementations, chapter 6 evaluates Pur in respect to
the requirements initially identified. Next, chapter 7 compares Pur to other
approaches to abstract over version control. Chapter 8 sums up the findings
of this report and gives an outlook on future work.
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2 Background

This chapter provides the background for the version control abstraction
Pur. It presents the vcss that Pur must support, identifies common con-
cepts of these systems, and extracts requirements that must be met by a
common abstraction.

2.1 Choice of Version Control Systems

The applicability of a version control abstraction depends on the set of vcss
that it supports. The set of supported systems itself depends on the choice
of vcss that are analyzed to establish requirements for Pur. The selection
of such vcss can be made with several criteria in mind. An analysis of
a large number of vcss can guarantee that a wide selection of concepts
is considered but will at the same time reduce the resources available for
the analysis of each single system. In contrast, the opposite approach of
analyzing a small number of vcss can guarantee a higher depth of analysis
for each system but can only produce relevant results if the selection of
vcss is relevant to many users.

The selection of vcss that is analyzed for Pur is restricted to a small set
of popular vcss. We identify popular vcss by surveying recent research
and actual usage of vcss. In 2007, Apache Subversion was found to be
the leader in the standalone Software Configuration Management (scm)
market [Sch07], where scm provides the wider context for version con-
trol [MWE10]. While no research known to us suggests that Subversion’s
prevalence has declined in proprietary software development, a strong
trend towards Distributed Version Control Systems (dvcss) can be ob-
served in open source projects [DAS09]. Unlike centralized systems, such
as Subversion, dvcss replicate history across repositories [OG90, Car98].
Big projects such as the Linux kernel, Google’s Android, Qt, or VLC now
use Git1 and projects such as Python, OpenOffice, or Vim now use Mercu-
rial2.

1https://git.wiki.kernel.org/index.php/GitProjects – last checked 01.12.2010

2http://mercurial.selenic.com/wiki/ProjectsUsingMercurial – last checked 01.12.2010

11



In open source projects, Subversion, Git and Mercurial appear to be the
most widely used systems. This is indicated by the number of projects
found on open source hosting platforms. The website Ohloh3 collects statis-
tics on open source projects. It suggests that over 70 % of projects are using
Subversion or CVS, over 25 % use Git, followed by more than 2 % using
Mercurial. These statistics suggest that by choosing Subversion, Git, and
Mercurial the version control concepts needed by most projects can be
regarded in the analysis. This is also suggested by the results reported
by [Mal10]. Consequently, we analyze Git, Subversion, and Mercurial to
form the basis of Pur.

2.2 Version Control System Architectures Compared
This section compares the three systems Git, Mercurial, and Subversion in
order to establish requirements for a common abstraction. The comparison
is structured by aspects that are relevant across the three systems. This
section gives a brief introduction of these aspects, followed by a comparison
of the vcss along these aspects.

vcss allow developers to manage changes to software artifacts. Software
artifacts whose changes are tracked are said to be versioned. The chosen
vcss expose software artifacts to the user as a file hierarchy. The history of
this file hierarchy is stored in repositories. In the chosen vcss, repository
architectures fall into two categories. Subversion stores the history of a
project in a single central repository. Git and Mercurial allow replicating
the history across multiple repositories.

All three vcss allow developers to access versioned files through work-
ing copies, also known as work spaces [Est96]. A working copy is a copy
of the versioned directory hierarchy that is under control of a developer.
Working copies additionally store meta data that indicates what repository
the working copy corresponds to and how the files in the working copy
relate to the history stored in that repository.

Working copies allow recording changes. A developer can modify files
in a working copy without affecting the repository. Changes are only trans-
ferred to the repository and recorded in its change history on explicit
request by the developer. This action is often called “commit” and usually
requires the developer to enter a message describing the changes. Uncom-
mitted local changes can be undone by restoring the working copy to a
previous state that is stored in the repository.

3http://www.ohloh.net – last checked 11.08.2011
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When changes are made in more than one working copy in parallel,
development is said to branch. Depending on the changes being performed,
it may be desirable to keep branches separate for a certain time, and thus
version the history of branches separately. Typical scenarios for this are
branches that contain new and unstable features and are therefore not to
be used by anyone but those developing these features.

A history model specifies how the history of changes to software arti-
facts is represented in a vcs. The history models employed by the three
vcss fall into two distinct categories. Git’s and Mercurial’s history models
have inherent support for representing branching development. In contrast,
Subversion represents branches on top of the history model.

On top of the history model, the branching model specifies how branches
are exposed as named entities. The branching model can be distinguished
from the history model. A history model may be able to represent the
existence of branches, but does not specify how branches are exposed as
named entities. Being able to identify branches by name is often desirable,
as it allows developers to communicate interaction between branches. For
example, it might be desirable to ask the vcs to merge the changes from
the “development” branch into the “stable” branch. A clear distinction of
history- and branching model can only be found in Git and Mercurial. It
is nevertheless desirable to distinguish branching- and history model, as it
simplifies comparing Git and Mercurial, which have near-identical history
models but diverging branching models. The following sections analyze
how the three vcss differ in the way that they address the various aspects.

2.2.1 Repositories

The three vcss exhibit two distinct ways of organizing repositories. In
Subversion, a project has exactly one repository whereas in Git and Mercu-
rial, each developer has his own repository. Centralized and decentralized
repositories have different properties. Centralized repositories allow bet-
ter control over how and by whom history is interacted with. In contrast,
decentralized repositories replicate history and thus allow developers to
version their personal changes without having access to a shared repository.
They thus facilitate distributed development. Replicated history addition-
ally allows many operations to perform faster but requires additional tools
to synchronize history.
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Subversion Subversion’s architecture is based on a client-server model.
As shown in fig. 2.1, a project that is versioned using Subversion has a
central repository, which can be accessed by multiple clients. The repository
is the only location that stores the complete history of the project.

Repository

Revision Store

Client 1

Working Copy

Client 2

Working Copy

Client 3

Working Copy

Figure 2.1: A simplified view of Subversion’s architecture

A single central repository has desirable consequences. A central reposi-
tory acts as a gateway to a project’s history. It can thus be used to regulate
access to the history, for example, by granting permission to access his-
tory. As such, a central repository can play a role in the implementation of
security policies.

The limitation to one central repository also results in undesirable conse-
quences. Storing the complete history in a single place makes the central
repository a bottleneck. Operations that need access to a project’s history,
such as finding the author who last changed a file, depend on access to the
history. In case of remote repositories, such operations are limited by net-
work access bandwidth and can thus require a noticeable amount of time
to complete. Furthermore, several operations are disabled when the reposi-
tory cannot be reached. For example, it is not possible to write changes to
the history without a connection to the repository.

Git and Mercurial Git and Mercurial are based on very similar architec-
tures. Both systems are based on a peer-to-peer model. As illustrated in
fig. 2.2, the distinction of client and repository that can be found in Subver-
sion does not exist. Instead, every peer has its own working copy as well as
replication of the project’s history. In dvcss, peers are commonly named
repositories.
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Figure 2.2: Git and Mercurial unify repositories and clients

The absence of a central repository has desirable consequences. The lack
of a central authority encourages distributed development. This can be
beneficial in open source scenarios, where it allows developers to version
the history of their personal changes to a project without requiring write
access to public repositories of this project. Furthermore, history replication
increases availability and performance. Local history storage allows history-
reliant operations to perform without network access and thus faster.

History distribution can also have undesirable consequences. Without
a central repository, no single gateway to a project’s history, and as of
such no single point to implement access control exists. The distinction of
local and remote repositories furthermore increases the complexity of the
required tool-set, which has to offer additional operations to synchronize
repositories.

In summary, the weight of the beneficial and undesirable properties of
centralized as well as decentralized repositories depends on concrete use
cases. A central repository can be beneficial if access control is of concern,
but can at the same time be undesirable, if no central authority for a project
exists, and diverging development is encouraged.

2.2.2 History Models

This section analyzes how the chosen vcss model the history of changes
made in working copies. History models can be categorized using certain
aspects [CW98]. History models can be extensional or intensional. Exten-
sional history models expose a set of objects that they version. An exten-
sional history might for example be h = (v1, v2, v3), with vn being variations
of the same object. Intensional history models instead provide means to is-
sue parameterized history queries. An intensional history model might for
example expose an interface getRevision(OperatingSystem, Database, Locale).
The three chosen systems provide extensional versioning.
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Moreover, history models can be state- or change based. While state-based
systems expose the history of a project as revisions of the versioned artifacts
as they existed at various points in time, change-based approaches expose
the changes made to versioned artifacts. All three vcss are state-based.

Many state-based history models expose history as a Directed Acyclic
Graph (dag) of revisions [CW98], as illustrated in fig. 2.3. A revision
consists of a snapshot and meta data. A snapshot is an immutable copy of
the versioned file hierarchy. The dag is formed by the parent relation that
connects child to parent revisions. The snapshot of a revision is assumed to
be a merged and modified copy of its parent revisions’ snapshots. Concrete
state-based history model may limit the maximum number of parents. A
revision’s meta data may include information such as author of changes,
time of commit, or a comment describing the changes.

comment = “Updated README”
author  = matthias.kleine
date    = 2010-09-28

a

b

c d

e

/
README
src

main.c

Snapshot

Meta Data

Revision

Parent

Figure 2.3: Representing history as a directed acyclic graph of snapshots

A history model may be able to represent that branching development
was merged back together. Figure 2.3 shows the representation of a merge
in a dag-based history model, revisions c and d are merged into revision
e. In state-based history models, merging two revisions is often performed
by finding a common ancestor revision and merging the changes that
were made in relation to this common ancestor. Merging of files can be
performed by an external tool, such as a diff3 tool [KKP07].

dag-based history models have only limited support for representing
operations that act on changes [O’S09]. This includes transferring single
changes across branches, so called cherry picking. Figure 2.4 shows an ex-
ample for cherry picking. The original history graph is shown on the left.
In this example, the developer wants to extend revision x with the changes
introduced by revision b, without introducing the changes made by a. As
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seen in the middle history graph, merging x with b is not a solution as it
introduces the changes made by a. Alternatively, the developer can copy
the changes made by b into a new revision b′. The resulting history graph
is shown on the right. The fact that both b and b′ are the result of the same
changes is not captured in the history model. It can thus not make use of
this knowledge, for example when comparing or merging revisions.
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Figure 2.4: Cherry picking the changes made by b onto x

Finally, the history model that is exposed to the user must be distin-
guished from the storage model employed by the vcs. In fact, all three
vcss expose a variation of the state-based approach to the user but use a
change-based approach underneath to reduce storage requirements.

Subversion Subversion has a linear state-based history model. The parent
relation is not modeled explicitly. Instead, revisions are numbered sequen-
tially. Revisions contain a snapshot of the complete directory hierarchy.
Thus, by writing changes to one or more files back to the repository, a new
revision of the complete directory hierarchy is created. If a file is changed
by a revision, this revision is said to be operative for this file. Clients can
request to read a specific revision of files stored in the repository. In ad-
dition to a directory hierarchy snapshot, revisions also contain meta data,
so called revision properties. Revision properties are exposed as key-value
lists and are used to store information, such as author of change. Apart
from revisions, individual files can be associated with meta data in the
form of key-value lists, so called properties. These are used to indicate
information such as line ending convention or merge history.

17



Figure 2.5 shows an abstract example for Subversion’s revisions. The
example shows three sequential revisions next to each other. Each revision
is visualized as a box that contains revision identifier and commit mes-
sage. Below, the directory hierarchy is listed and the contents of the file
“src/main.c” that exists in all three revisions is shown. As can be seen, the
second revision adds the file “util.h” and the third revision makes use of
this new file in “main.c”.
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Figure 2.5: Example Subversion revisions visualized

Subversion’s linear history model cannot represent branching of revi-
sions. Thus, changes that are made within a working copy can only be
committed to the repository once they have been merged with the changes
from the most recent revision. This requires working copies to store their
relation to the history.

Subversion’s working copies track their relation to the history by asso-
ciating each file with the revision that it is based on. This prevents clients
from accidentally committing over changes made by others. When a part of
the working copy is restored to a revision from its repository, the working
copy marks the local files as being based on that revision. Once changes
are to be transferred to the repository, Subversion can determine whether
the user is trying to overwrite files that were changed in the repository
since the working copy was last updated. If this situation occurs, the user
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must first get the current revision of the affected files from the repository
and merge the remote changes with the local changes. Only then can the
changes be transferred to the repository.

The following example illustrates the operation of working copies in
Subversion. Given are two developers who work on the repository shown
in fig. 2.5. Each developer has his own working copy. The status of the
working copies is shown in table 2.1. In this example, both working copies
are initially updated to revision 3. Next, both developers modify “src/
main.c”. As a result, files in both working copies are based on revision 3

but have local changes. Next, developer 1 commits his changes and thus
creates revision 4. The snapshot of the directory hierarchy associated with
revision 4 is exactly the snapshot that developer 1 had in his working copy.
At this point, developer 2 still has a working copy that is based on revision
3 and that has local changes. As he has changed “src/main.c” and as this
file has also been changed in the repository, he cannot yet commit his
changes. Instead he updates his working copy to revision 4, thus merging
the changes he made with that of revision 4. By updating his working copy
he discards the information that his changes were originally developed
against revision 2. Once the changes are merged, the linearized history can
be committed, creating revision 5.

Table 2.1: Example for status of working copies

Action Working Copy 1 Working Copy 2

Rev 3 Rev 3

Change working copy Rev 3 + Changes Rev 3 + Changes
Developer 1 commits changes Rev 4

Developer 2 merges changes Rev 4 + Changes
Developer 2 commits changes Rev 5

In summary, Subversion provides a linear state-based history model. Re-
visions are not ordered by an explicit parent relation, but are addressed
by sequential numbers. As of such, Subversion cannot represent branching
development as revisions with multiple child revisions. Correspondingly,
developers can transfer changes to the repository only after merging them
with the latest revision on the repository. Unmerged changes are not repre-
sented in the history.
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Mercurial and Git Git and Mercurial use non-linear state-based history
models. The need for a non-linear history model arises from the system’s
distributed nature. dvcss’s history models must be able to represent that
revisions were created in parallel and are thus based on the identical revi-
sion.

The need for a non-linear history model becomes apparent when trans-
ferring the example shown in table 2.1 to Git or Mercurial. Again, two
developers start out with separate working copies that are both based on
the same revision. This time, both developers can modify their working
copy and commit their changes to their own repositories without affecting
the other developer’s repository. If that happens, the two repositories will
contain two different revisions that are both based on the same shared
revision. This is not possible with a linear history model as that used by
Subversion. In Subversion the fact that changes were performed in parallel
is discarded and history is linearized.

Both systems implement a history model based on a dag of snapshots. In
contrast to Subversion, revisions are not forced to be ordered linearly. Both
systems thus have intrinsic support for branching development. Merging of
branches is performed by creating revisions with multiple parent revisions
and merging the snapshots.

Distributed history models require revisions to be identifiable across
repositories. For example, serializing revisions across repositories relies on
being able to identify revisions across repositories. As distributed develop-
ment requires a non-linear history model, revisions cannot be identified
across repositories as single sequential numbers. A version identification
scheme that relies on a central authority that issues revision identifiers is
undesirable in distributed versioning. Thus, each repository must be able
to generate globally unique revision identifiers. This can be achieved by ad-
dressing revisions using their content, i. e., associated file snapshots, meta
data, and parent revisions. Both vcss achieve this goal using cryptographic
hashes across a revision’s content to generate revision identifiers. This so
called compare-by-hash strategy ensures that identical revisions that are
stored in different repositories will generate the same identifier and at the
same time reduces the possibility of using the same identifier for different
revisions [Bla06].

In summary, Git and Mercurial provide a dag based history model.
Both systems can thus represent the history of branching and merging
development. They do not require developers to merge changes before
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committing. As a consequence of the non-linear history model, revisions
must be assigned globally unique identifiers.

Differences of Git and Mercurial Git and Mercurial provide different
implementations of a directed acyclic graph snapshot model. Up to now,
the history models of Git and Mercurial were explained only at an abstract
level. This section describes how the concrete history models deviate from
the abstract model.

ObjectWithIdentifierGit

identifier() : Integer

Commit

author
committer
message

Tree Blob

content

TreeEntry

name
mode
treeOrBlob

+ parents * + entries*

+ tree

1

Figure 2.6: A simplified view of Git’s object model

Git’s history model has three kinds of objects: Commits, trees, and blobs.
Figure 2.6 shows a simplified visualization of these kinds of objects. Fig-
ure 2.9 illustrates an instance of this model. All three kinds of objects are
addressed using an identifier that is generated from their content. A blob
consists of arbitrary binary data. A tree represents a file system hierarchy.
It mainly consists of a mapping of names to either blobs or trees, each
referred to using their identifier. A commit corresponds to a revision. It
consists of a tree, a list of parent commits, both again referred to using
their identifiers, and various meta data such as commit message or author
of change.

Mercurial’s history model has three kinds of objects, file contents, man-
ifest, and changeset, as illustrated in fig. 2.7. A manifest is a mapping of
path names to file contents. A changeset refers to a manifest and contains
additional meta data, such as author and commit message. Mercurial uses
a generic dag-based model to represent history for any of these objects. As
of such, revision graphs exist for all three kinds of objects. Objects do not
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directly reference other objects, but instead refer to revisions of objects. For
example, a manifest does not directly refer to a file contents but instead
refers to a revision of a file contents.

Manifest

nameToBlob : 
Dictionary

Changeset

nodeId
manifest
user
time
files
comment

ObjectWithIdentifierHg

identifier() : Integer

FileContents

content

Figure 2.7: A simplified view of Mercurial’s history model

The generic history model employed by Mercurial is based on the revlog
concept [Mac06]. Revlogs are an efficient implementation of a dag-based
history model for files. As illustrated in fig. 2.8, vertices correspond to
snapshots of a file’s contents and can be referred to using globally unique
identifiers. Edges indicate the parent relationship. Each Mercurial reposi-
tory has one revlog for changesets, one revlog for manifests, and revlogs
for versioned files.
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Figure 2.8: A simplified model of the revlog abstraction used in Mercurial

Git’s and Mercurial’s history models differ in the abstractions that they
use to describe history. As illustrated in fig. 2.9, Git stores history only
on the level of revisions, whereas Mercurial stores history on the levels
of files, file hierarchies, and revisions. The bold arrows indicate parent
relations. As a consequence of this, Mercurial’s history model has inherent
support for capturing copy or move operations on files. If a file is moved or
renamed it is still versioned in the same revlog. This allows tracking back
changes across renames. Git relies on heuristics to do so but has the benefit
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of a simpler model. Heuristics are needed in both systems, if movement of
content at a granularity smaller than files is to be detected. In conclusion,
both models have small differences, but are very similar when contrasted
with Subversion’s history model.
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Figure 2.9: Exemplary comparison of Mercurial’s and Git’s history models

History Models Summarized The history models of the chosen vcss
fall into two categories. Subversion relies on a linear history model. Even
though changes do happen in parallel in Subversion in multiple working
copies, committing them to the repository discards the information that
changes were performed in parallel.

In contrast, Git and Mercurial provide a dag-based history model. The
history models can represent that changes were made in parallel, a prereq-
uisite for dvcss. The history models of Git and Mercurial apply a nearly
identical approach to solve this problem. Revisions have unique identifiers
and can thus be addressed and transferred across repositories.

2.2.3 Branching Models

The three systems provide different means for identifying branches. Git
and Mercurial provide branching models that are separated from their
history models. This separation does not exist in Subversion.
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Subversion In Subversion, branches are represented as well as identified
by directories of the versioned file hierarchy. Each revision stores the state
of all branches. Branches are created by copying directories, and merged
by merging the changes of one directory to another one. Representing
branches on top of the history model is necessary, as Subversion’s history
model cannot represent branching revisions. Subversion does as of such
not clearly separate the notions of history- and branching model.

The naming and organization of branch directories is governed by best
practices. By convention, the top-level directory that is being versioned has
the three subdirectories “trunk”, “branches”, and “tags”. This convention
assumes that a single central branch is shared by all developers. This is the
“trunk”. If other branches are required, they are created by copying the di-
rectory of an existing branch to a new subdirectory of “branches”. Copying
is performed using Subversion’s “copy” command. This command creates
a new revision with meta data that indicates where newly added files
were copied from. This information is later on used to establish common
ancestors during merging.

Subversion allows branches to be merged. As a first step of merging
branch “branches/a” into branch “branches/b”, Subversion identifies all
operative revisions of “branches/a” that have not been merged into “branch-
es/b”. In order to identify these revisions, Subversion keeps track of past
merges. Each directory can have a so called mergeinfo meta data property.
This property stores a list of branches and revisions that have been merged.
Thus, the mergeinfo property can represent that only single revisions were
merged across branches, so called cherry picking. The actual implementa-
tion of mergeinfo is more complex and must deal with various exceptions,
such as partial merging of branches4.

Table 2.2 illustrates Subversion’s mergeinfo with an example. The reposi-
tory in this scenario contains two branches a and b. The table lists repository
actions and their result on the operative revisions and mergeinfo of both
branches. Up to action 4, both branches are created and diverging develop-
ment was performed. Branch a was modified in revisions 1 and 3. Branch
b was modified in revisions 2 and 4. Action 5 merges a into b. The merge-
info of b is updated to reflect this. The mergeinfo is extended to cover
non-operative revisions. This is done to keep the mergeinfo easier to read

4http://www.collab.net/community/subversion/articles/merge-info.html

– last checked 20.12.2010
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Table 2.2: Subversion’s mergeinfo illustrated

Action Operative Revisions Mergeinfo

a b a b

1. Init Repo (1)
2. Create b (1) (2)
3. Modify a (1, 3) (2)
4. Modify b (1, 3) (2, 4)
5. Merge a into b (1, 3) (2, 4, 5) a : 2–4
6. Modify a (1, 3, 6) (2, 4, 5) a : 2–4
7. Merge a into b (1, 3, 6) (2, 4, 5, 7) a : 2–6

after consecutive merges. For example, after modifying a in action 6 and
merging these changes to b in action 7, b’s mergeinfo is set to includes a’s
revisions 2–6.

The result of a merge is a single revision that integrates the changes from
merged revisions into the files on the destination branch. A merge revision
cannot be distinguished from a revision that manually added all changes
made in the source branch. It is therefore not possible to merge the destina-
tion branch back to the source branch by identifying unmerged revisions,
as outlined above. Subversion does thus not support repeated bi-directional
merges. For example, if branch “branches/test” is created as a copy from
“trunk”, changes on “trunk” can be repeatedly merged into “branches/test”,
but changes on “branches/test” cannot repeatedly be merged back into
“trunk”. Instead, Subversion offers a so called “integration merge” that
performs a 3-diff merge using the files in both branches and the original
revision when the branch was created as a common ancestor. After an
integration merge, the source branch is to be discarded.

In summary, branches are implemented in Subversion as directories.
The history of merging is stored on a per-directory basis using so called
mergeinfo properties. Mergeinfo properties can represent that only single
revisions were merged across branches. Subversion can thus represent
cherry-picking of changes across branches. Yet, it does not allow repeated
bi-directional merges.

Git In Git, each repository maintains a mutable dictionary of branch
names to revision identifiers. For example, a repository might store that
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branch “main” corresponds to revision “715” and that “test” corresponds
to revision “825”. We name this style of branch-representation label-based
branching. In addition to its own branch dictionary, a repository stores
copies of the dictionaries of other repositories. These are exposed to the user
by prefixing branch names with the name of the repository that they are
owned by. For example, “origin/main” is the branch “main” on the reposi-
tory “origin”. These local branches that correspond to remote branches are
called tracking branches.

Git additionally allows each local branch to have a so-called upstream
branch. If a branch has its upstream branch set, Git’s commands provide
information on how the two branches evolved in relation to each other.
For example, the local branch “master” can have its upstream branch
set to branch “master” on repository “origin”. If a new commit is made
on both branches, Git’s status command will report “Your branch and
‘origin/master’ have diverged, and have 1 and 1 different commit(s) each,
respectively.” Git’s “branch” command can report similar information for
all branches contained in a repository.

Upstream branches are helpful when interacting with more than one
repository. This is common in open source projects where central repos-
itories can only be written by trusted developers. Untrusted developers
must use their own repositories to share changes and can request trusted
developers to use their changes.

Figure 2.10 illustrates a concrete example. On the left it shows a public
repository that can be read by anyone. This repository has two branches
that contain a stable as well as an untested version of the product. The
public repository can only be written by selected developers. The devel-
oper “Contributor” works on a new feature but cannot write to the public
repository. He must employ a mediator to publish his changes. He keeps a
local branch “publish” that always points to a commit that he wants to be
published and asks a developer “Integrator” to watch this branch.

The developer “Integrator” is amongst those who can write to the public
repository. His role is to integrate changes made by others. His repository
contains branches that correspond to the branches on the public reposi-
tory, as well as a branch “contrib” that has “publish” on “Contributor”’s
repository as its upstream branch. Thus, Git will notify “Integrator” when-
ever this branch changes. It will furthermore simplify merging changes
from an upstream branch. Thus, Git helps keeping track of branches that
correspond to each other and simplifies interactions between them.
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Figure 2.10: An example of upstream branches in Git

In summary, Git provides a label-based branching representation. A
branch is a label that points to a single revision. In Git, repositories cache
branches of remote repositories. A branch can furthermore have an up-
stream branch, to which it is compared and merged with by default.

Mercurial Mercurial’s revisions store the name of the branch that they
belong to as part of their meta data. For example, a revision may store that
it belongs to branch “default”, whereas another may store that it belongs
to branch “testing”. As such, Mercurial does by default not have an explicit
reification of a branch’s current revision. Multiple childless revisions with
the same branch-name may exist. A branch name can still be used to
identify a revision. Given all revisions that belong to a branch, the revision
that was added most recently to the repository is said to be the current
revision of that branch. As the current revision of a branch depends on
the order that revisions were added to a repository, two repositories can
report different current revisions for a branch, even if they contain exactly
the same revisions.

Mercurial’s lack of an explicit reification of a branch’s current revision
forces developers to perform certain tasks outside of the vcs. For example,
it can be desirable to investigate revisions from another repository with-
out changing information about local branches. As Mercurial’s branching
model cannot separate transferring revisions to a repository from changing
the current revisions of branches, it is impossible to refer to both the remote
as well as the local current revisions of a branch by name.
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Mercurial can be extended to support a branching model similar to that
of Git with the help of the “bookmark” extension. Bookmarks also offer a
name to revision mapping. Yet, unlike Git’s branches, bookmarks are not
owned by repositories. In Git each repository has its own namespace for
branch names, so that a branch named “main” can have a different version
than a branch with the identical name on a different repository. Mercurial’s
bookmarks share one global namespace. Transferring revisions from one
repository to another one automatically changes bookmarks with the same
names on the destination repository. If one wants bookmarks to be visible
to other repositories but at the same time wants bookmarks with identical
names to point to different revisions, one has to enforce this manually.

In summary, Mercurial provides a revision-based branching model. Each
revision stores the name of the one branch that it belongs to. This branching
model does thus not have an explicit reification of a branches’ current
revision. A branching model similar to that of Git exists as an extension of
Mercurial, so called bookmarks.

2.2.4 Summary

This section analyzed and compared the three vcss, with special focus on
the concepts of repositories, history-, and branching models. The analyzed
vcss exhibit differences in all of these concepts. Two kinds of repository
organizations exist, centralized and distributed. Two kinds of history mod-
els exist, linear history and dag-based history. Three kinds of branching
models exist, manual directory-based branching, label-based branching,
and revision-based branching.

Given the analysis of the three systems, the next step is to extract require-
ments that are the basis for an abstraction that can be implemented in all
of these three systems.

2.3 Requirements

Pur should provide an abstraction that is sufficiently rich to be the basis for
client programs that perform consistently across vcs. This can be guaran-
teed by satisfying various requirements, foremost providing an abstraction
that has sufficiently specified semantics and that does not expose specifics
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of supported vcss. This sections presents and discusses these and other
requirements.

2.3.1 Provide Rich Semantics

In order to be the basis of complex version control client programs, Pur
must have sufficiently rich and specified semantics. For example, it is desir-
able to provide a construct for identifying branches that behaves uniformly
across vcss. As a consequence of requiring rich semantics, providing ab-
stractions that deviate from concrete vcss is preferable to providing ab-
stractions with no specified semantics. For example, it is preferable to
provide a branching model that for Mercurial must be implemented using
the non-standard bookmarks to providing a branching model that behaves
differently across vcss.

2.3.2 Version Control System-agnostic Interface

Pur must not expose details of supported vcss that are not relevant to other
vcss. For example, although branching development is implemented using
directories in Subversion, this implementation details must not be exposed
by Pur, as it is irrelevant to Git and Mercurial. By not exposing specifics
of underlying vcss, client programs are guaranteed to work against any
supported system.

2.3.3 Minimal Interface

Pur should not cover aspects that are relevant only to particular client
programs, such as convenience methods that can be reconstructed from
other methods, nor should it cover aspects that are relevant only to imple-
mentors of Pur for concrete vcss, such as concepts of version identifiers or
the distinction of local and remote repositories. By making minimality one
of the design goals of Pur, an overly complex architecture and resulting
drawbacks can be prevented. This is desirable, as superfluous complexity
is likely to hamper the adaption of Pur.

29



2.3.4 State-based Non-linear History Model

The analyzed vcss all rely on a state-based history model. The abstraction
thus must also provide a state-based history model. In order to support
Git’s and Mercurial’s non-linear history, the model must be able to repre-
sent arbitrary directed acyclic graphs.

2.3.5 Consistent Branching Model

It is desirable to have a branching abstraction in Pur whose semantics
are specified to a degree that allows branches to work consistently across
various vcs back-ends. In particular, calculating a branch’s current revi-
sion should be consistent across back-ends. Furthermore, distinguishing
between local and remote branches should be handled consistently.

2.4 Summary

This section provided the background for an abstraction over version con-
trol concepts. Three vcss were analyzed for common concepts and re-
sulting requirements for an abstraction were established. The following
sections describe and evaluate how Pur addresses these requirements.
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3 Pur—An Abstraction for Version
Control

This chapter introduces Pur (IPA [pu:5
“
]), an abstraction over version control

constructs. Pur abstracts over the concepts of the vcss Git, Mercurial, and
Subversion. Client programs can interact with any of these vcss through
Pur, without requiring knowledge of the vcs’s specifics. Pur is designed
to address the requirements identified in the previous chapter.

Pur is specified as a set of object oriented interfaces. This set consists
of interfaces for versioned objects, history of versioned objects, branching,
and repositories. This chapter introduces these interfaces in this order. The
specification of the interfaces is concluded with concrete examples of Pur,
which aim to give a practical understanding.

Figure 3.1 illustrates the interfaces of Pur using a UML-like notation.
Role-names do not indicate that referencing objects must store references
as fields/instance variables. Instead, role-names indicate that referencing
objects must provide access to the referenced object via message send.
Furthermore, all operations provided by the interfaces can fail. It is the
caller’s responsibility to deal with failures.
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Figure 3.1: Interfaces for the objects being versioned by Pur
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3.1 Stores and Snapshots

A store is a mutable object that is to be versioned. A snapshot is an im-
mutable deep copy of a store. A store can capture its current state as a snap-
shot and can restore its state to that captured in a snapshot by loading it.

3.2 Versions

Pur represents history as a directed acyclic graph of snapshots represented
by versions. A version consists of a snapshot, a list of its parent versions,
and meta data, such as commit message, author, or time of creation. The
parents of a given version v are said to have v as its child. The terms
“ancestors” and “descendants” are used to refer to the transitive closure of
the parent (respectively child) relation.

3.3 Historians and Repositories

Pur provides label-based branching through historians. A historian has a
name, a version, and can be requested to be set to a different version. A
historian is owned by a repository. A repository owns a set of historians
that it exposes. It allows creating new historians and deleting existing ones.

Historians are not named “labels” to underline the fact that a historian is
not merely a name and a version but also encapsulates access to this version.
Historians are furthermore not named “branches” to avoid confusion what
constitutes a branch across vcss.

3.4 Pur by Example

So far only an abstract description of Pur was given. The following section
aims to provide a more practical understanding of Pur with the help of a
few example scenarios. First, practical examples of stores and snapshots
are given. Next, visual examples illustrate the history model of Pur as well
as the interaction with it.
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3.4.1 Stores and Snapshots

Stores reify the objects being versioned. For this example we assume a file
based environment. Thus a store corresponds to the versioned directory
hierarchy and a snapshot to an immutable copy of it. We visualize snap-
shots as boxes with text that corresponds to the contents of the files, as
seen in fig. 3.2. This visualization does not show any information about
how the snapshot is synchronized, diffed, or merged. It is nevertheless a
useful visualization to show differences between snapshots.
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Figure 3.2: Visualization of snapshots

3.4.2 Versions

Figure 3.3 shows a history graph of versions with two consecutive versions
shown in detail. The topmost version labeled a has no parents, a snapshot
of an empty store, and no meta data. The version b has a as its only parent.
Its snapshot contains the source code of the class “Main”. The only child
of this version is version c. The child has a different snapshot that contains
an additional method, as is also indicated by the version’s comment.

Versions can represent branching development. The versions d and e the
same parent version. The changes of both versions are merged back into
one version f .

3.4.3 Historians

When developing branches it becomes desirable to assign names to diverg-
ing branches. Pur addresses this need with historians. Historians provide
label-based branching and thus allow identifying versions that are currently
being worked on. For the sake of simplicity, all historians in this example
are assumed to be owned by a single repository. Figure 3.4 shows a version
graph at different points in time. Part 1 shows the initial version graph.
Only one version is shown, the rest of the version graph being left out.
There is exactly one historian, named “share” that has this one version as
its version. In this example, team members agreed that naming a historian
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Figure 3.3: Visualization of a history graph. Two versions shown in detail

“share” indicates that the historian’s version is sufficiently stable to be used
by all developers.

At this point in time a developer performs a large refactoring that
changes interfaces that are used by other developers. It is desirable to
record the refactoring as a series of versions, as it allows dividing the
refactoring into logically separated steps. The intermediate versions con-
tain incomplete refactorings that the developer does not want to share
with other developers. The changes thus cannot be made using the “share”
historian. Instead the developer creates a new historian named “refac-
tor” that initially has the identical version as “share”, as can be seen in
part 2.

As shown in part 3, the developer next starts working on the refactor-
ing, thus creates new versions and advances the “refactor” historian. The
developer continues to create new versions using the “refactor” historian.
Simultaneously, other developers advance the “share” historian by creating
new versions. The resulting state is shown in part 4. Finally, the developer
decides that he wants to share his changes with other developers and thus
merges them with the version of the “shared” historian. He furthermore
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Figure 3.4: Historians create new versions

sets the “shared” historian to this newly created version. This can be seen
in part 5.

3.5 Summary

This section introduced Pur, an abstraction over version control concepts.
Pur is specified as a set of object oriented interfaces that cover various ver-
sion control concepts. Based on these interfaces, concrete implementations
of Pur as well as client programs that make use of Pur can be built. Both
kinds of implementations form the basis for the following sections.
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4 Implementing Pur for Concrete
Back-ends

This chapter describes Pur implementations for Git and Mercurial in the
Newspeak programming platform [BAB+

08]. It thus validates the imple-
mentability of Pur. The Newspeak programming platform encompasses
the Newspeak programming language, an ide, and various libraries. The
implementation of Pur within Newspeak serves as a basis for the version
control application PNS that is described in chapter 5.

This chapter is structured as follows. Implementation guidelines are
discussed that were followed during the implementation to achieve main-
tainable and extensible code. Next, the implementation of the concrete
back-ends is explained. Currently, back-ends for Git and Mercurial are
implemented. An implementation strategy for Subversion is outlined.

4.1 Abstract Implementation

It is desirable to make the implementation of Pur extensible and maintain-
able. These goals can be achieved by applying software engineering’s best
practices, such as modular design. This section analyzes possible design
choices and explains how these properties can be achieved by implement-
ing Pur as a framework.

4.1.1 Implementation-specific Requirements

Pur does not include concepts that are relevant only to either vcss or client
programs. Instead Pur addresses concepts that are shared by both. For ex-
ample, Pur does not include version identifiers, nor does it include diffing
algorithms. Concrete Pur implementations must provide these concepts
both on top of and below Pur. Some of these concepts are relevant across
vcss, respectively, vcs clients. For example, a construct for version iden-
tifiers can be found in any of the supported vcss. Diffing algorithms are
relevant to multiple vcs clients.
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Implementing these shared concepts separately for each vcs and client
program would result in repeated implementation effort. The implemen-
tation effort can be kept low by implementing Pur as a framework that
captures and orchestrates shared concepts both on top of and below Pur.
Concrete vcss can specialize this framework and thus can rely on the
shared implementation provided by the framework. The following section
explains the design of this framework.

4.1.2 Architecture Overview

Pur is implemented as a framework that is provided by a set of abstract
classes that implement parts of the interfaces described in chapter 3. These
abstract classes can again be divided into a generic implementation of Pur
on the one hand, and specializations for repositories that are accessed via
working copies and repositories that are accessed through the working
copy of another repository. We name the former local repositories and the
latter remote repositories. The benefits of this distinction are explained in
section 4.1.3.

This section first describes the generic implementation and later on the
specializations for local and remote repositories. Figure 4.1 depicts the
classes provided by the generic part of the framework. The notation is
based on UML, the difference being that methods shown in gray must
be implemented by subclasses. Additionally, slots as well as methods are
expected to be accessible via message sends. Thus, a slot can be a valid
implementation of a message required by an interface. The names of the
classes are identical to those of the interfaces. If not stated otherwise, this
section refers to classes.

The class Version serves as a base for all implementations of the Version

interface. It provides common methods, such as compareTo, which calculates
the differences to another version, or versionsIncomingFrom, which takes a
version v and returns all ancestors of v that are not part of the receiver’s
history. These common methods require the concrete subclasses to imple-
ment the methods marked as missing. E. g., compareTo must first calculate
a common ancestor of the two versions being compared which itself relies
on parents being implemented.

The abstract class Historian is the base class for all historians. A historian
stores its owning repository and its name as fields. The abstract class
Repository does not provide any implementation at all. Instead it merely
defines the required interface.
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Figure 4.1: Abstract classes provided by framework; gray indicates methods that
must be implemented by subclasses

4.1.3 Local and Remote Repositories

Pur distinguishes local and remote repositories. Only local repositories
expose a working copy. Using this working copy, local repositories allow
users to read and write versions, including their snapshots. In contrast,
remote repositories expose only partial information about the versions that
they store, including the versions’ identifiers, but not their snapshots. In
order to access the snapshot of a version stored in a remote repository,
this version first must be transferred to a local repository. As found in
section 2.2.2, repositories assign unique identifiers to versions. Using these
identifiers, versions can be transferred across repositories.

Local Repositories The classes provided by the specialization for local
repositories are shown in fig. 4.2. The class LocalRepository is the base class
of all local repository implementations. As its superclass Repository, it does
not provide any concrete implementations. Instead it extends the interface
that has to be provided by concrete implementations. It adds a method to
retrieve a version from the back-end using a back-end specific identifier,
and two further methods to transfer versions to and from other repositories.
Both of these act on version identifiers instead of on versions.

The class LocalRepositoryVersion captures common concepts for versions
that are accessed through a local repository. A local repository version
stores its repository, a version identifier and meta data as fields. Special-
izations of LocalRepositoryVersions can assume the presence of these fields
and must provide access to snapshots and version identifiers of parent
versions. Operations for accessing parent versions or comparing versions
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Figure 4.2: Specializations for local repositories

for equality using version identifiers can then be implemented once in
LocalRepositoryVersions and thus prevent duplicate implementation.

The class LocalHistorian is the base class for all local historians. A local
historian stores its version as a field that contains a LocalRepositoryVersion.
LocalHistorian does provide an extendable implementation for setVersion

that stores the version in this field. Subclasses can extend this implementa-
tion as to reflect the change in version in the concrete back-end.

Remote repositories Figure 4.3 depicts the specializations of the frame-
work for remote repositories. Remote repositories are represented as in-
stances of RemoteRepository. Accessing versions stored in a remote repository
requires access to a local repository. A RemoteRepository thus always has a
LocalRepository, to and from which versions can be transferred. This is per-
formed via the import and export methods which make use of the local
repository’s corresponding methods.
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Figure 4.3: Specializations for remote repositories
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A RemoteHistorian stores only its version identifier. It provides methods
to read and write its version which work on LocalRepositoryVersions. While
reading a version ensures that the version is first transferred to the local
repository, setting a version ensures that the new version is transferred to
the remote repository.

4.1.4 Extensions

Various extensions to the concepts provided by Pur were implemented.
These extensions are not essential to Pur but instead provide features that
are relevant only to certain client programs. As such it is desirable to
implement them as a layer on top of Pur. This section introduces two
extensions: Tracked repositories and upstream historians1.

Tracked Repositories This extension allows each repository to have a col-
lection of other repositories that it interacts with, so called tracked reposi-
tories. Tracked repositories allow developers to keep track of repositories
that they interact with and thus eliminate the need for a central authority
of repositories.

The use of tracked repositories can be illustrated using the following
example. A developer works on an open source project. This project has an
official public repository Rp that is controlled by the project’s maintainers.
In addition to the official public repository, several developers publish their
own repositories Rd1 · · · Rdn that contain code that has not been accepted
by the project’s maintainers.

The developer in our example only wants to interact with a subset of all
of these repositories. No central authority for repositories exists. Instead,
developers must maintain the set of repositories that they interact with.
This can be accomplished using tracked repositories. Assuming, that Rdx
contains extensions to the project that are not included in Rp, the developer
can store Rp as well as Rdx as tracked repositories. The tracked repositories
can then be exposed to the developer by a version control application that
allows browsing historians and notifies the developers of changes.

Upstream Historians This extension allows each LocalHistorian to store
a historian that it corresponds to as its upstream historian. The concept
of upstream historians corresponds to the concept of upstream branches

1The terms “tracked” and “upstream” are taken from the Git terminology.
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of Git, see section 2.2.3. As such, upstream historians allow establishing
links between historians that are commonly related to each other, in order
to allow version control applications to compare and merge such related
historians automatically.

For example, upstream historians can be set by default when creating
new historians on the basis of existing remote historians. When local and re-
mote historian diverge, a source control application can inform developers
about this and offer appropriate actions. For example, the local historian
“main” may be created as a clone of the historian “main” on a central
repository. If “main” changes on the central repository, the version control
application may notify the user of this and offer to reset the local historian
to the remote historian’s version.

Upstream historians are not required to compare historians. Yet, the
number of historians that can potentially be compared grows with the
number of tracked repositories and historians. Thus, a way to reduce the
number of relevant historian-pairs is required and upstream historians
provide one way to address this problem.

4.2 Implementation for Back-Ends

This section describes how Pur was implemented for Git and Mercurial
using the previously described framework. It also describes a implemen-
tation strategy for Subversion. Throughout this section table 4.1 is used to
compare the implementation of actions in Mercurial, Git, and Subversion.

4.2.1 Git

The classes provided by the framework correspond to constructs of Git.
Pur’s abstractions version, history, and repository are mapped to Git’s
commit, branch, and repository, respectively. The LocalRepositoryVersion

maps directly to Git’s commit, with Git’s commit identifiers serving as Pur’s
internal identifiers. LocalHistorian directly maps to Git’s local branches, and
RemoteHistorian maps to to Git’s remote branches.

Setting a historian’s version is mapped to pushing the corresponding
commit to the branch of the corresponding repository. E. g., setting branch
“master” on repository “repo” to the version with identifier “123” executes
“git push repo 123:master” within the working copy of the local repository.
This works for local as well as for remote historians. Pur’s repositories are
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mapped to Git’ repositories. Importing and exporting versions is mapped
to the “fetch” and “push” commands.

The extensions can be implemented directly using Git’s constructs, see
table 4.2. Git provides constructs to store a list of remote repositories in a
repository. This is used to implement tracked repositories. Git furthermore
allows each branch to have an upstream branch. This is used to implement
upstream historians.

Table 4.2: Implementation of extension commands

Action Git

Get name and repository of
“main’s” upstream historian

for-each-ref --format

%(upstream)refs/heads/main

Set “main’s” upstream
historian to “other” on
“server”

branch --set-upstream

main

refs/remotes/server/othera

a where the remote branch must first be imported using “fetch server
other refs/remotes/other”

4.2.2 Mercurial

The classes provided by the framework correspond to constructs of Mer-
curial. Versions correspond to changesets, historians to bookmarks, and
repositories to repositories. LocalRepositoryVersions correspond to Mercu-
rial’s changesets, with node ids being version identifiers and parent node
ids accordingly.

Historians are implemented using Mercurial’s bookmarks. These do by
default behave differently than historians: Mercurial’s bookmarks share
one global namespace. When changesets are pushed to another repository
Mercurial checks if these changesets are referenced by any bookmarks. If
that is the case, Mercurial will try to update corresponding bookmarks
on the destination repository. This is not in conformance with the desired
behavior of having one historian namespace per repository.

Local namespaces thus must be simulated on top of bookmarks. This can
be done in at least two different ways. First, it is possible to simulate Git’s
approach of storing historians of both local and remote repositories within
a local repository. Second, one can store only the repository’s own histo-
rians as its bookmarks. Both approaches have drawbacks. The approach
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of storing both local and remote historians locally requires encoding the
historian’s owning repository into a bookmark name. This again would
require repositories to have unique identifiers. No obvious solution for this
exists.

The approach of storing only local historians can make use of the fact
that historians of remote repositories can be read and written without influ-
encing any local bookmarks using Mercurial’s “debugpushkey” command.
In order to prevent automatic bookmark synchronization, this approach
must ensure that the bookmark extension is disabled for commands that
transfer revisions. Unlike the first approach, remote historians can only
be read if a connection to remote repositories is available. The latter ap-
proach was chosen nevertheless, as its implementation does not does not
require new concepts, such as repository identifiers, to be introduced into
Mercurial.

Repositories are implemented using Mercurial’s repositories. The
LocalRepository relies on having access to the repository’s working copy,
while the RemoteRepository requires only a repository identifier that Mercu-
rial can make use of. LocalRepository’s import and export methods have to
ensure that the bookmark extension does not automatically update book-
marks in any repository. This can be achieved by temporarily disabling
Mercurial’s bookmark feature.

The extensions of Pur do not directly correspond to concepts of Mer-
curial, but must partly be simulated. Mercurial can store a list of remote
repositories within a working copy. This is used to implement the tracked
repositories. Mercurial does not provide a way to store upstream book-
marks. Upstream historians are thus stored in a custom section of Mercu-
rial’s configuration files.

4.2.3 Subversion

A concrete implementation of Pur for Subversion has not been established
due to time constraints. This section describes an implementation strategy
in order to show the feasibility of such an implementation.

Pur can be implemented for Subversion in various ways. A naive ap-
proach would be to adapt Subversion’s linear history model. This would
not allow changes to be recorded in parallel. As being able to do so is
essential in collaborative editing, this is not an adequate approach. Instead,
it is possible to use Subversion repositories as storage for arbitrary data
and implement non-linear history on top of Subversion’s linear history.
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Pur’s versions can be implemented using Subversion’s revisions. A revi-
sion does by default not have an explicit reification of parent revisions. This
can be added using Subversion’s revision properties, see section 2.2.2. Sub-
version allows arbitrary key-value pairs to be added to revisions as meta
data. Thus, a revision may have the meta-data “parents=3,7” to indicate its
parent revisions.

Subversion’s revision properties can also be used to represent histo-
rians. Revision properties are mutable. Thus, it is possible to store the
state of historians in a single dedicated revision, for example the first
revision of the repository. For example, one could store the meta-data
“historians=main:317, testing:512”. Setting historians to other versions is
then implemented by changing this meta data.

Repositories correspond to Subversion’s repositories. Thus, by default,
only a single repository exists. This would make a large part of the abstract
implementation irrelevant to Subversion, as there is not distinction between
local and remote repositories. A evaluation can only be performed by
implementing Pur for Subversion.

Subversion does not provide a command to create a revision whose
file hierarchy snapshot corresponds exactly to that of the working copy.
Instead, Subversion’s commit command tries to integrate changes with those
made by others. If local and remote changes affect distinct files, they are
integrated. Creating a new version therefore requires interacting directly
with the Subversion library. The Subversion library provides operations to
directly interact with a repository’s underlying file system.

4.2.4 Summary

This section showed that Pur can in practice be implemented for the chosen
vcss. The provided implementations rely on a shared abstract implemen-
tation in order to reduce code redundancy. Across the implementations,
different conceptual mismatches are addressed. One can observe, that Pur
maps nearly directly to Git, requires some amount of simulation for Mercu-
rial, and requires a complete history model to be simulated for Subversion.
Given these implementations, Pur can be represented in Git, Mercurial, and
Subversion.
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5 Pur for Newspeak—PNS

The applicability of Pur remains unevaluated without a client application.
As part of this research, PNS—Pur for Newspeak—was implemented.
PNS is a version control application that is used to version Newspeak
code. PNS is layered on top of Pur and can thus store history in Git or
Mercurial.

This chapter explains the implementation of PNS. It is structured as
follows: First, the implementation of snapshots of Newspeak classes is
given. Based on that, two kinds of stores are explained that can load and
produce these snapshots. Next, the version control application itself is
presented. Finally, an evaluation of PNS is given.

5.1 Snapshots

PNS must be able to capture snapshots of versioned objects, i. e., Newspeak
classes. It does so by providing a structured representation of class snap-
shots, as illustrated in fig. 5.1. This structured representation was chosen in
favor of an unstructured text representation, at it allows re-using the same
representation for other operations, such as diffing.

PNS provides three kinds of snapshots. A StoreSnapshot is the only
snapshot that is directly exposed to Pur. It corresponds to a snapshot of a
store and as of such consists of class snapshots, represented by the class
ClassSnapshot. A class snapshot provides fields for all elements that make
up a class.

While methods are captured in custom MethodSnapshots, all slots of a class
are stored as one plain string. This is due to a limitation of the current form
of the Newspeak grammar which does not yet treat comments as meta
data, but simply discards them. If slots are interspersed with comments,
these comments cannot be attributed to any slot. This is due to change,
with slots being handled as meta data that is accessible after parsing.
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Figure 5.1: Implementation of snapshot interface for Newspeak

5.2 Stores

PNS must provide two kinds of stores, image-based stores and file-based
stores. The former are required, as the Newspeak platform is implemented
as an image-based ide. In contrast to file-based systems, developers inter-
act with live objects and classes. The state of the live classes in the image
must be captured by a store. The latter is required, as the concrete imple-
mentations of Pur interact with file-based vcss. Figure 5.2 shows the two
kinds of stores.
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Figure 5.2: Implementations of store interface for Newspeak

5.2.1 Parsing and Printing Snapshots

Both ImageStore as well as FileStore must support reading and writing snap-
shots. Newspeak itself provides parsing and printing mechanisms that store
live classes as files. Figure 5.3 illustrates both required and existing syn-
chronization mechanisms. Only one of the two required synchronization
mechanisms has to be implemented. The remaining mechanism can be pro-
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vided by combining the other two mechanisms. PNS itself implements the
FileStore synchronization mechanism and provides the ImageStore synchro-
nization by combining the FileStore and file to class mechanisms provided
by Newspeak.

Live 
Classes

Snapshots

Files

RequiredRequired

Existing

Figure 5.3: Existing and required synchronization mechanisms

Reading files into snapshots makes use of Newspeak’s parser combinator
framework [Bra07]. This framework allows specifying grammars separately
from tools that act on them. The grammar used by the Newspeak compiler
can thus also be used to build a parser that produces Snapshots. While the
normal Newspeak parser produces ASTs, and thus must construct result
nodes for syntactical elements as detailed as message sends, the snapshot
parser produces results at the coarse-grained level of classes and methods.
A custom parser for snapshots can be created by subclassing the Newspeak
grammar and adding actions to create snapshots at the corresponding
nodes, such as class- or method declaration. By subclassing the grammar
that is also used by the AST parser, changes to the Newspeak syntax are
automatically reflected in both parsers.

The snapshot parser implementation makes use of the fact that store
snapshots that are to be loaded from files are usually very similar to snap-
shots that were loaded before. Often, only few classes change between
revisions. The parser is thus wrapped in a memoizing parser that keeps
a mapping of class- and method sources to snapshots. Thus, when the
source of a class is parsed that has been parsed before, the snapshot can be
returned with a simple lookup.

Writing snapshots back to files makes use of a custom implementation
in each snapshot class that writes a standardized representation of itself
to a stream or a file. This implementation strategy has the drawback that
the syntactical specification of Newspeak is replicated within snapshots.
Should changes to the Newspeak syntax be required, they thus must be
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made in multiple places. The implementation was chosen nevertheless in
order to keep the initial implementation effort low.

The ImageStore synchronization mechanism can be implemented by com-
bining the existing class-to-file and file-to-snapshot mechanisms, and vice
versa. This implementations strategy does not require any additional im-
plementation to convert between snapshots and classes and can thus be
realized with minimal effort. In order to speed up the conversion of live
classes to snapshots, the image’s change notification mechanism is em-
ployed. This mechanism allows client code to be notified when classes
change. PNS keeps a mapping of live classes to snapshots, which it re-
moves classes from when they are changed. When snapshots for all classes
in the image are requested, only those for classes that have changed since
the last request have to be rebuilt.

5.2.2 Stores as Working Copies

Stores form the basis of working copies. PNS treats the entire Newspeak
image as a single ImageStore and uses this store as the current state of
each working copy. For each Pur repository, PNS additionally maintains a
current historian. PNS expects the classes in the image to be based on this
current historian.

5.3 Diffing Algorithm

PNS must be able to show differences between snapshots. For example,
in order to show the changes that were made in the Newspeak image, to
browse the history of changes, or to merge versions. Several techniques to
diff and merge source code exist. An overview can be found in [Men02].

PNS implements a diffing algorithm that is based on Eclipse’s hierar-
chical diffing algorithm [CO]. Figure 5.4 shows the classes and interfaces
provided by the algorithm. The algorithm diffs tree structures that consists
of nodes that implement the Diffable interface. In order to be Diffable, a
node must provide the following operations: It must provide access to its
child nodes. It must be able to determine whether it corresponds to another
node and whether it equals another node.

The algorithm compares two nodes and optionally takes a common
ancestor node. It produces a DiffResult. A DiffResult consists of the two
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Figure 5.4: Classes of the diffing algorithm

or three input Diffable nodes, a ChangeInfo structure, as well as a set of
children DiffResults. The children DiffResults are created by recursively
applying the diffing algorithm to corresponding child nodes of the input
nodes.

The algorithm relies on being able to identify corresponding nodes. In
our implementation, nodes do correspond to each other if their parent
nodes report them as belonging to the same type of nodes (e. g., instance
methods or class methods) and they have the same name. As a result,
the algorithm detects renamed nodes as a removal and an addition of a
node. The algorithm can furthermore not detect that nodes of one type
were replace by nodes of another type. For example, replacing a class by a
method will be recognized as a removal and an addition.

5.4 User Interface

The user interface of PNS consists of various components that are ar-
ranged as a single coherent application to the user. Newspeak provides the
application framework Hopscotch [Byk08] that allows developers to build
and arrange composable user interface elements into applications which
resemble web documents. Figure 5.5 shows PNS opened on a single local
repository. The main user interface consists of four components. The com-
ponent “Modified in Image” exposes interactions between the image and
the currently loaded historian. The component “Current Local Historian”
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shows the current historian in relation to other local and remote histori-
ans. The component “Other Local Historians” shows collapsed variants
of the same user interface for all other local historians. The component
“Remote Repositories” allows interacting with tracked remote repositories.
The following sections give detailed descriptions of the single components.

Interaction of current 
historian and other 
historians

Other local 
historians, shown 
collapsed

Interaction of 
Image and current 
historian

Tracked  remote 
repositories, 
shown collapsed

Figure 5.5: Screenshot of PNS

5.4.1 Modified in Image

The component shown in fig. 5.6 allows image changes to be analyzed,
committed, or reverted. The component displays snapshots of the image
store next to corresponding snapshots of the current historian, filtering out
unchanged snapshots. In this example, only three classes were changed. By
default differences are shown in a collapsed form, but can be expanded to
expose details. Changes can be reverted to the historian’s version using the
“revert” links.

A commit can be initiated using the “commit” link. This link opens a
text field to enter a commit message, as shown in fig. 5.7. The snapshot
created by a commit can be composed of the image’s and current historian’s
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Select snapshots to be committed

Commit selected changes

Expand 
changes

Revert partial 
changes

Revert all changes

Figure 5.6: Interaction choices between image and current historian

snapshots. By default, the image store’s snapshot, and thus all changes, are
committed.

It can be desirable to commit only individual changes without reverting
uncommitted ones. Such partial commits require developers to compose a
store snapshot that includes only some of the image’s changes. Developers
can compose a store snapshot by choosing individual snapshots from the
image’s and historian’s snapshot. Choosing snapshots is performed using
the “select” links provided by the user interface. The example in fig. 5.6 is
set up to commit only the changes made in the class “VCS”, as indicated
by the bold typeface and select links. The other two changed classes have
the historian’s snapshot selected. After committing the selected changes,
the unselected changes will remain in the image and can thus be committed
or reverted at a later point in time.

Enter commit message

Expanded 
changes

Perform or cancel the commit

Figure 5.7: Changes were expanded and a commit message was entered
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5.4.2 Current Local Historian

The component shown in fig. 5.8 provides the user interface for interacting
with the current historian. The interface is split into a generic section and a
section that compares the historian to its upstream historian. The generic
section allows deleting the historian as well as creating a new historian
by cloning the current one. If the historian does not have an upstream
historian, the generic section also shows a link to share the historian to
another repository, as illustrated in later examples.

Outgoing 
versions

Delete the historian

Incoming 
versions

Action

Clone the historian

Relation to 
upstream 
historian

Generic 
interface

Figure 5.8: Interaction with the current historian and related historians

The historian relation section compares the historian to its upstream his-
torian. It shows incoming and outgoing versions and offers an appropriate
action. Versions are incoming if they only exist in the upstream historian’s
history. Versions are outgoing if they only exist in the current historian’s
history. If neither incoming nor outgoing versions exist, both historians
have the same version and the user is notified that the historians are in
sync. If either only incoming or outgoing versions exist, the two historians
are in an ancestor relation and the user interface offers an action to reset the
older of the two historians to the younger historian’s version. If incoming
as well as outgoing versions exist the historians have diverged and the user
is offered the option to merge the changes back together.

In the example shown in fig. 5.8, the upstream historian of the local
historian “main” is the historian “main” on the repository “bitbucket”.
Two incoming and three outgoing versions exist. The developer can thus
choose to merge the two historians. Doing so will bring up the merge user
interface that is explained in section 5.4.5.
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5.4.3 Other Local Historians

The component depicted in fig. 5.9 provides user interfaces for all other
local historians. These user interfaces are extensions of the interface dis-
played for the current historian and are by default shown in collapsed form.
In addition to the actions provided by the user interface of the current his-
torian, the generic interface section is extended by a “load” link that makes
the historian the current one and loads its version into the image. The
example shown in the screen shot includes two historians that do not have
an upstream historian and thus display the “share” link. When expanded,
the interface shows the relation to the particular upstream historian, as well
as to the historian currently loaded into the image.

Collapsed 
historian UIs

Share the historianLoad the historian

Figure 5.9: Interaction with other local historians

5.4.4 Remote Repositories

The component depicted in fig. 5.10 allows interacting with tracked remote
repositories. Each tracked repository lists its historians. Historians can be
“tracked”, meaning they are cloned and the cloned historian’s upstream
historian is set to them. Historians that are already tracked are marked as
such.

Clone and set 
upstream

Local historian with 
this upstream 
already exists

Historians on 
remote 

Repository

Figure 5.10: Interaction with remote repositories
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5.4.5 Diffing and Merging UI

Figure 5.11 shows an excerpt of the merge UI. The interface is identical
with the one used to show differences between the image and the current
historian. When used in merge mode, the two versions to be merged are
compared against a common ancestor. The merge UI automatically selects
individual snapshots that were changed. In the screen shot, a superclass
clause was changed on the left side and several snapshots were changed
on the right side. When snapshots were changed in both versions, an addi-
tional column is shown that contains the ancestor’s source. The developer
can select any of the three columns or enter a manual merge resolution.
The manual merge can be based on an automatic word-based merge.

Figure 5.11: Excerpt of the merge UI

5.5 Outlook

This section identifies work flows that are common across vcss that PNS
does not support, and gives an outlook on adding support for them.
Thereby, we show that the lack of supported work flows is not a result
of a conceptual weakness of Pur, but instead a consequence of the proto-
typical implementation of PNS.

5.5.1 Projects

PNS treats the complete Newspeak image as a single store. It is desirable
to introduce an abstraction for projects that allows dividing the image into
multiple stores. The Newspeak image does by default have exactly one
namespace for classes. With only one namespace, different projects cannot
create classes with identical names. While an implementation of project-
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based stores does not pose an architectural challenge, it has been deferred
so that it can be implemented in accordance with an implementation of UI
support for multiple namespaces.

5.5.2 History Rewriting

Git by default provides several tools that allow rewriting history by creating
new versions based on existing ones. These tools include a command to
amend the previously committed version. Amending a version results in
a new version being created that has the amended version’s parents as its
own parents and thus acts as a replacement for it.

The so called rebase tool allows creating a series of versions based on
an existing series of versions. It is called rebase because it is commonly
used to apply a series of changes that were committed locally against new
versions that were created remotely, thus changing the ancestor versions
they are based against.

All of these operations result in versions being removed from the ancestry
of the historian or branch they are being performed on. They are therefore
often said to be “history rewriting”. History rewriting operations become
problematic once they affect versions that have already been shared with
other people or repositories. Their usage is furthermore criticized as it
results in versions being created that have not been loaded into a working
copy and thus have not undergone manual testing.

PNS does not provide any support for history rewriting operations.
This is not the result of Pur lacking concepts but merely of PNS lacking
the appropriate user interfaces. An extension of PNS to support such
operations without modifying Pur is thus possible.

5.5.3 Diff and Merge UI

PNS currently provides a hard-wired diffing algorithm that yields less than
optimal results. Most vcss can be configured to use external diffing tools.
This is not possible with PNS right now. Possible improvements include
allowing arbitrary diffing algorithms to be integrated or extending Pur’s
diffing algorithm to support renaming or refactoring detection [DMJN07,
DMJN08, KN09], possibly making use of refactorings that where recorded
by the ide [HD05, DNMJ06, Fre06].
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5.5.4 Bisect

Git and Mercurial provide commands that help identifying versions that
introduced a bug by performing a binary search on revisions, relying on
user feedback to decide whether a version contains a bug. While this is not
supported by PNS, it can be implemented on top of Pur.

5.5.5 Conclusion

As seen in this section, support for various common vcs can be added
to PNS without requiring modifications of Pur. The limited functionality
of PNS is thus not a consequence of failures of Pur, but instead a sign of
PNS’s prototypical implementation status.

5.6 Summary

This chapter showed that version control applications can be built on top
of Pur. PNS exposes a rich set of concepts, including branching, without
relying on a specific vcss for storing the versioned objects. As seen in
this section, PNS is currently a prototypical implementation, but can be
extended to support additional work flows without changing Pur.
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6 Evaluation

Section 2.3 identified requirements that Pur must satisfy in order to provide
an abstraction that is sufficiently rich to be the basis for client programs that
perform consistently across vcs. This section evaluates to which degree
Pur addresses these requirements.

6.1 Provide Rich Semantics

As motivated in section 2.3.1, Pur should provide semantics sufficiently
rich to be the basis for version control client programs that perform consis-
tently across vcs back-ends. Unlike other abstractions, Pur addresses this
requirement by providing history and branching models with specified
semantics. Pur history can thus be represented in any supported vcs. A
detailed analysis of both history and branching models is found later in
this section.

6.2 Version Control System-agnostic Interface

As motivated in section 2.3.2, Pur should not expose details of supported
vcss in order to provide uniform access to all supported vcss. This allows
building clients that work consistently across vcss. For example, Pur clients
are not required to know details of Mercurial’s bookmarks or Git’s branches,
but can instead rely on historians.

Providing uniform access to multiple vcss requires vcs specifics to be
hidden. For example, Pur does not expose Subversion’s mergeinfo and as
such cannot capture the history of cherry-picking. Supporting mergeinfo
would result in other undesirable consequences, see section 6.4. Given the
requirement to access multiple vcss through one abstraction, this lack of
supported concepts is warranted.
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6.3 Minimal Interface

As motivated in section 2.3.3, Pur should provide a minimal interface
that does not specify concepts that are relevant only to specific vcss or
client programs. This is desirable as it allows establishing a set of essential
version control concepts and thus prevents Pur from gaining superfluous
complexity.

As a result of this conservative strategy, some concepts that are relevant
to client programs were left out of Pur, such as tracked repositories or up-
stream historians. It is at this point not possible to evaluate whether these
concepts should become part of Pur. For example, other ways for speci-
fying relations between historians may be more desirable than upstream
historians. Concrete client programs could implement custom variations.

As a further result of this strategy, concepts that are relevant only to
vcss were left out of Pur, such as version identifiers or the distinction
of local and remote repositories. As a consequence, Pur implementations
must address these concepts. This can cause duplicated effort. As shown in
chapter 4, this does not hold for our implementation. Instead, an abstract
implementation of Pur was provided that adds these missing concepts.

By being small rather than complete, Pur defers several decisions to the
actual implementation. While this does have negative consequences, such
as the repeated implementation effort, it is also desirable, as it prevents Pur
from prematurely gaining undesirable complexity.

6.4 State-based Non-linear History Model

As motivated in section 2.3.4, Pur should provide a state-based non-linear
history model in order to provide a uniform abstraction over the history
models of Git, Mercurial, and Subversion. Using this history model, Pur
can represent the same history in all three systems. The converse does not
hold. The history models of the concrete vcss can represent history that
cannot be represented in Pur.

Pur does not have a concept of files and as such cannot capture file re-
namings. Unlike Pur and Git, Mercurial and Subversion can represent file
re-namings. Support for representing file re-namings could be simulated in
Git, by storing them as additional meta data. Support could subsequently
be included in Pur. Nevertheless, the resulting benefit is not obvious. Git’s
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approach of determining file re-namings via heuristics delivers promising
results and furthermore serves as a basis for sub-file movement detection.
The increase in Pur’s complexity required by this extensions is thus not
warranted.

As shown in section 2.2.3, Subversion’s mergeinfo attributes can repre-
sent the fact that single revisions were merged into a branch, so called
cherry picking. While it is desirable to represent cherry-picking in the his-
tory, Subversion’s mergeinfo-based branching has other undesirable con-
sequences, such as the lack of support for repeated bi-directional merges.
For example, if branch “branches/test” is created as a copy from “trunk”,
changes on “trunk” can be repeatedly merged into “branches/test”, but
changes on “branches/test” can only once be merged back into “trunk”.
Mergeinfo attributes are therefore not exposed by Pur.

6.5 Consistent Branching Model

As motivated in section 2.3.5, Pur should provide a consistent branching
model in order to allow branches to function consistently across vcss.
With Historians, Pur provides a label-based branching construct that al-
lows applying the same branching work flows across Git, Mercurial, and
Subversion. Pur clients do not need to know the branching concepts of
concrete vcss.

Historians differ from the native branching models of the supported
vcss. Users of Mercurial who do not use bookmarks are used to storing
branching information in changesets, respectively versions. Users of Sub-
version are used to manage branches manually through directories. As a
result of that, Pur’s work flows differ from those of the concrete vcss. Yet,
losing vcs-specific branching concepts gains the benefit of providing a sin-
gle branching construct with rich semantics that can be used consistently
across vcss.

6.6 Conclusion

Pur successfully addresses all the requirements set up in section 2.3. As
such, it provides an abstraction that is sufficiently rich to be the basis
for client programs that perform consistently across vcs. As seen in this
evaluation, providing a uniform abstraction results in a certain loss of
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control over the details of supported vcss. Consequently, Pur is not an
appropriate abstraction for use-cases that rely on vcs-specific concepts or
work flows. In contrast, use cases that explicitly desire to apply the same
concepts and work flows across various vcss find Pur to be a valuable
solution.
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7 Related Work

Abstractions over version control have been built in various contexts. The
wider context of Software Configuration Management (scm) has seen re-
search on establishing general principles of change in software, but not with
the intent of building an interface for multiple existing vcss. Some research
in the field of version control exists that aims to provide an abstraction for
version control concepts. Finally, several implementations exist that aim
to address this goal to some extent. This chapter analyzes both the work
established in the scientific community as well as concrete implementation
and relates both of them to Pur.

7.1 Software Configuration Management

Several attempts to capture general principles of change in software exist
within the wider research field of Software Configuration Management
(scm). scm is concerned with the control of the evolution of complex
systems [Est00], which version control is an important part of [MWE10].

In [CW98], a taxonomy of fundamental version control concepts is es-
tablished and existing scm systems are categorized using this taxonomy.
The taxonomy is not built with the intent of establishing an implementable
interface, but with the goal of identifying methods to describe configura-
tions of versioned artifacts through rules, so called intensional versioning.
As such, a large and diverse number of scm systems are compared. The
resulting taxonomy covers a broad range of version control concepts. It
identifies representations and relations of concepts both for objects being
versioned, the so called product space, and objects that represent the ver-
sioning, the so called version space. Pur addresses only a fraction of these
concepts, but does so with a different intent.

A taxonomy for change in software is presented in [BMZ+
05]. This tax-

onomy is intended to cover a broad range of aspects, including aspects that
are related to version control, such as change history, as well as aspects
that are often not found in vcss, such as type of change. Unlike Pur, the
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goal of this taxonomy is not to be the basis for a concrete software interface
for version control but instead to allow comparisons between tools that
support change in software, such as refactoring tools as well as vcss to be
made.

[WMC01] aims to provide a unified model for version management, not
with the attempt to support several existing version control systems, but
with the intent of providing a core implementation that can be extended
by custom implementations of history models or version storage. By not
relying on a state-based history model, this model allows expressing more
general vcss. It additionally adds support for configuration rules that are
commonly found in scm research.

In [Zel97], a formal model of scm is presented with the goal of establish-
ing a scm system that can be adapted to the user’s needs. The model uses
a single logical formalism to describe various scm concepts, such as revi-
sions, variants, workspaces, and configurations. Using this unified model,
an experimental scm system is built that is used to show the configurability
of the approach.

In summary, existing research on scm abstractions does not aim to pro-
vide an implementable abstraction that allows client programs to interact
with multiple systems. Instead, existing research is concerned with estab-
lishing general models that can be used to either compare existing systems
or build new systems.

7.2 Version Control

Some attempts to formalize version control outside the scope of scm exist.
The authors of [LSL] provide a formal specification of version control that
is based on the concept of patches. Patches are rules that specify how a
repository is modified. A formal theory is presented that describes when
patches can be applied. It lacks essential version control concepts such as
branches. This theory is kept abstract and not intended to be mapped to
existing vcss.

In [Bra09], initial ideas for an abstraction over version control systems
that is to serve as an interface for vcs-agnostic clients is presented. As
such, the goals of this paper are very similar to that of this report. Some
concepts of the resulting abstraction have found its way into Pur, such as
the concept of a store. The abstraction handles other concepts differently
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than Pur. Versions are separated from their history. A distinction between
servers and clients is made, where clients store only a linearized history.
These differences are analyzed in the next paragraphs.

Pur has the concept of versions that have parents whereas the related
model has two separate concepts of version and history. In the related
model a version does not know its parents. Pur unifies the concepts of
version and history for the following reasons: The meta data that is part
of a version describes how the version was created in relation to previous
versions. For example, a commit message describes the changes that were
made to previous versions. The author indicates who committed these
changes. None of the meta data that is attached to a version makes sense
without the history information. The history of a version is a integral part
of a version.

The related model introduces two kinds of peers, clients and servers, with
clients being limited to storing linear history and servers storing history as
a dag, but being limited to having one childless version. Pur has only one
type of peer, repositories that also can have multiple childless versions but
introduces historians to organize access to branches.

The distinction of servers and clients was made in the related abstraction
with the intent of supporting clients with limited storage capacities. Pur
evades this problem by leaving unspecified where versions are stored. Pur
requires that versions can be accessed via historians through repositories,
but does not require repositories to provide their own version store. Instead
it is also possible to implement a Pur system that allows repositories to
be owned by clients with limited storage capabilities by storing only some
versions on the actual client and deferring access to unavailable versions to
remote repositories.

In conclusion, only few formalized and implementable abstractions over
vcss exist. Most abstractions over vcss are not designed as implementable
interfaces and address other goals, such as identifying ways to specify
configurations. No formalized and implementable abstraction is known to
us that has actually been implemented. Pur thus contributes by specifying
an abstraction that is shown to be implementable.
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7.3 Implementations of Version Control System
Abstractions

Tools that can interact with multiple vcss exist. Each of these tools pro-
vides some form of abstraction over vcss. Across these implementations,
different originating requirements can be identified. For example, some
abstractions expose rich interfaces and include concepts of history and
branching; others are shallow and require implementors to expose vcs-
details. This section analyzes the concrete implementations by identifying
the requirements that they address, evaluating the implementation, and
relating them to Pur.

7.3.1 Eclipse

Eclipse is an ide that allows developing software in several programming
languages. Eclipse’s Team component1 allows interacting with various
vcss. Implementations exist for CVS, Subversion, Git, Mercurial, and pos-
sibly others.

The goal of the Team component is to allow building custom version
control applications that are integrated into the ide. Part of this goal is
to avoid enforcing a work flow on resulting applications. The focus corre-
spondingly lies on providing means to interact with the ide, e. g. allowing
to register callbacks for file change notifications or accessing the contents
of files at other revisions. The Team component provides a simple history
model, but no abstraction for branches.

The Team component’s history model can capture non-linear history on a
file-basis. This differs from Pur, which can capture history on a store-basis.
Eclipse separates history into revisions and their history. The interface
IFileRevision provides access to a file’s revision. A revision consists of a
snapshot of the file and additional meta data, such commit message, author,
and time stamp. Revisions are separated from history. The interface IFile-
History provides access to the history graph linking revisions. It exposes a
revision’s child and parent revisions. A revision can have multiple parent
revisions, so called contributors, as well as child revisions, so called targets.

1http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.platform.doc.isv/

guide/team.htm – last checked 20.10.2010
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These interfaces can be implemented to some degree by back-ends that
capture history on a project-basis. They must be able to trace changes
to single files across revisions. Subversion and Mercurial internally store
changes on a file basis and thus can track file renames. Unlike that, systems
like Git have to rely on heuristics.

Version control applications built on the basis of the Eclipse Team ab-
stractions can make use of tools provided by Eclipse, such as a hierarchical
diff viewer (see fig. 7.1). Making use of the diff viewer relies on exposing
the contents of a file at a revision in a format usable by the diff viewer.

Figure 7.1: Eclipse’s hierarchical diffing UI

Version control applications can be fitted to custom vcs concepts and
work flows. Thus, a Git back-end can provide tools to interact with Git’s
branches and can furthermore adopt Git’s selective committing approach,
whereas a Mercurial back-ends can adopt appropriately.

In comparison to Pur, the abstraction provided by Eclipse’s Team compo-
nent lacks concepts for branching development as well as for history on a
store basis. This results in fewer shared user interfaces and thus in a higher
amount of duplicated effort.

7.3.2 IntelliJ IDEA

IntelliJ IDEA2 is a commercial ide developed by JetBrains. It provides an
abstraction for vcss that is implemented for Subversion, Git, and Mercurial.
As the Eclipse Team abstraction, this abstraction is designed as a basis of
custom version control applications and as such provides a set of tools,
such as history or diff viewers, that can be used across vcs integrations.

2http://www.jetbrains.com/idea/ – last checked 26.10.2010
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IntelliJ IDEA provides a history model that separates history from re-
visions. A VcsFileRevision provides access to the contents of a file at a
certain revision, together with meta data such as author, time stamp, and
commit message. A VcsHistoryProvider can open a VcsHistorySession that
allows listing past revisions of a file. The history model is at this point
linear. The generic history viewer thus can only show a list of revisions. No
abstraction for branches exists. As such, vcs back-ends implement their
own abstractions and user interfaces.

Figure 7.2 shows the menus that the integrations for Subversion and Git
provide. As can be seen, the interaction possibilities are customized to the
back-ends. For example, the Git integration allows users to make use of
Git’s rebase operation, which rewrites history. These operations are not
available in the Subversion back-end.

Figure 7.2: IntelliJ IDEA’s vcs-interaction menus for Subversion (left) and Git
(right)

In conclusion, IntelliJ IDEA allows building vcs-integrations that pro-
vide tools custom to each back-end. Interaction with common tools is
provided in a limited fashion. The lack of abstractions for non-linear his-
tory or branches hinders the implementation of history viewers that would
be appropriate for Mercurial and Git.
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7.3.3 Emacs DVC

GNU Emacs [Sta02] is a text editor that is designed to be extended by its
users. Several extensions to interact with vcss exist. This section analyzes
DVC3, a version control application that acts as a front-end for various
vcss by providing a single set of user-interface operations. DVC is imple-
mented for several back-ends, including GNU Arch, Bazaar, Git, Mercurial,
and Monotone.

DVC relies on a common abstraction that must be implemented by every
back-end that is very close to the actual user interface provided by DVC.
As such, it includes operations to print a revision, to print the diff between
revisions, or to switch to another branch.

DVC does not require back-ends to provide structured access to revi-
sions besides being able to list and print them. This allows DVC to support
vcss with different history models. For example, implementations for sys-
tems that are not based on snapshots but on patches, such as Darcs [Rou05],
can be implemented. This is different from Pur, which assumes that history
can be represented as a directed acyclic graph.

DVC stands out of the other vcs abstractions by providing a common in-
terface to interact with branches. Back-ends must implement operations to
create a new branch and to switch branches. This interface carries only lim-
ited semantics about what a branch actually is and thus is not restricted to
any branching model. For example, the Git back-end implements branches
using Git’s label-based branches whereas the Mercurial back-end uses
Mercurial’s commit-message based branches. As a consequence, a certain
knowledge of the back-end is required to know how branches behave.

When compared to Pur, DVC can support a wider variety of vcss. This
is achieved through an abstraction that leaves details about history- and
branching model unspecified. This at the same time limits the applicability
of DVC. Its abstractions are designed to be the base of one concrete ver-
sion control application. The lack of a clear separation of an intermediate
model and the version control application itself hinders the implementation
of other applications on top of DVC. Finally, the semantics of branches
depend on the back-end and thus require the user to be familiar with it.

3http://download.gna.org/dvc/ – last checked 20.10.2010
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7.3.4 Other Abstractions

Various other vcs abstractions exist that to some extent aim to address the
requirements addressed by Pur. The following list of implementations of
vcs abstractions is presented in less detail than the ones presented so far,
either because they aim to address other goals than Pur or because their
applicability is limited.

anyvc Anyvc4 is a library that provides an abstraction to interact with
various vcss. It has been implemented for Bazaar, Mercurial, Git, and
Subversion. Anyvc is being used by the Pida ide

5.
Anyvc provides an abstraction for non-linear history similar to Pur’s. A

Revision has parents, meta information, and allows accessing files. An ab-
straction for branches does not exist yet, but is considered future work. As
such, Anyvc does not address the requirement of providing rich semantics.

pyvcs Pyvcs aims to be a “minimal VCS abstraction layer for Python”6.
Its goal is to provide an abstraction to allow browsing code at arbitrary
revisions in various vcss. As such, it does not implement abstractions for
branches. It is implemented for Mercurial, Git, Subversion, and Bazaar.

MR MR 7 is a “Multiple Repository management tool”. It allows running
identical commands across multiple repositories. For example, it allows
committing changes made in several working copies at once. MR can run
commands across repositories of different VCS, providing support for
Subversion, Git, CVS, Mercurial, Bazaar, and Darcs.

The commands exposed by MR are mapped to commands of the concrete
vcss. MR supports commands, such as “update”, “status”, “commit”, and
“diff”, but does not include any branching abstractions. As such, it does
not address the requirement for providing rich semantics.

VCI—The Version Control Interface VCI8 is a library that provides an
abstraction for various vcss. It has been implemented for Bazaar, Mercurial,
Git, CVS, and Subversion. VCI provides an abstraction for history, but
none for branches.

4http://bitbucket.org/RonnyPfannschmidt/anyvc/ – last checked 25.10.2010

5http://pida.co.uk/ – last checked 25.10.2010

6http://github.com/alex/pyvcs/blob/master/README.txt – last checked 25.10.2010

7http://kitenet.net/~joey/code/mr/ – last checked 15.11.2010

8http://vci.everythingsolved.com – last checked 25.10.2010
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It separates abstractions for revisions and history. Revisions can be ac-
cessed using a structured interface that exposes information such as com-
mitted data, author, and time stamp. The history abstraction supports only
linear history. According to VCI’s documentation, abstractions for both
branching and non-linear history are considered future work.

Visual Studio Microsoft Visual Studio9 is an ide developed by Microsoft.
It provides two ways to integrate vcss into it10. First, by implementing
a custom user interface that does not rely on any shared version control
abstractions by creating a so called VSPackage. Lacking any abstractions,
this approach allows complete control over the integration but at the same
time does have none of the benefits of a shared abstraction.

The second approach to integrate a vcs is to implement a so called
Source Control Plug-in. Visual Studio provides a minimal source control
user interface that allows initiating interaction with a plug-in. For example,
a user can request to see the history of a file. A source control plug-in
must provide call backs that are invoked when a user requests one of these
actions. It is the plug-ins responsibility to construct an appropriate user
interface. As such, a plug-in must provide most of its own user interface.
The set of actions is fixed and contains actions that are not relevant for all
vcss, for example actions to lock files exist, but no actions to synchronize
repositories exist. As such, this approach is limited in the set of vcss that
it supports.

7.3.5 Summary

Several implementations of version control abstractions exist. None of these
abstractions addresses all of Pur’s requirements. Most abstractions rely on
implementations exposing vcs-specific concepts. Only few of these abstrac-
tions provide constructs for both history and branching. No abstractions
exists that provides a branching model with semantics specified to the
degree that Pur does.

9https://www.microsoft.com/visualstudio/en-us/ – last checked 26.10.2010

10http://msdn.microsoft.com/en-us/library/bb164701(v=VS.80).aspx

– last checked 26.10.2010
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8 Summary and Outlook

This report presents the version control abstraction Pur and evaluates it
for practicability and applicability. This chapter gives a summary of the
contributions presented by this report and based on that gives an outlook
on future work.

Pur captures essential version control concepts as a set of interfaces that
can be implemented for concrete vcss, such as Git, Mercurial, and Sub-
version. Pur allows version control clients, such as ide tools or web status
reports, to support all of these concrete vcss through a single set of inter-
faces and thus eliminates the need to build custom implementations for
each vcs. Unlike most other abstraction for vcss, Pur exposes constructs
that help organizing branching development.

Pur has been tested for practicability by implementing it within the
Newspeak programming platform. Implementations exist for Git and Mer-
curial, with a implementation strategy for Subversion having been de-
scribed. An evaluation of these implementations for applicability was per-
formed by implementing the version control application PNS as a Pur
client.

The research on Pur has led to new questions becoming relevant. The
following paragraphs give an outlook on possible next steps.

Implement Support for Subversion This report proposes a strategy for
implementing Pur for Subversion. This strategy has not been tested for
practicability. As of such, final judgment must be deferred until concrete
implementations exist.

Build Other Pur Clients The version control application PNS is cur-
rently the only client that makes use of Pur. Pur is designed to provide
an appropriate abstraction for various kinds of vcs clients. Possible other
clients include web-based status report tools or information extraction
tools. While these tools are expected to be implementable on top of Pur, a
concrete evaluation can only performed once such implementations exist.
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Extend Pur Pur is not intended to solve all version control abstraction
challenges. Yet, Pur can serve as a basis for experimentation with solutions
for remaining issues, such as finding abstractions that are relevant to only
some vcss or client programs. This report has already shown first ideas
for such extensions. Our implementation extends Pur both on the back-end
side, through the distinction of local and remote repositories, as well as on
the client program side, through extensions such as upstream historians.
All of these extensions require further evaluation. Additional Pur imple-
mentations and client programs are needed in order to better evaluate the
applicability of such extensions.
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