
Probe Log: Visualizing the Control Flow
of Babylonian Programming

Eva Krebs
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
eva.krebs@hpi.uni-potsdam.de

Patrick Rein
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
patrick.rein@hpi.uni-potsdam.de

Joana Bergsiek
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
joana.bergsiek@hpi.uni-potsdam.de

Lina Urban
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
lina.urban@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
robert.hirschfeld@hpi.uni-

potsdam.de

ABSTRACT
Code itself is abstract, which makes it often difficult to understand
– sometimes even by the programmers that wrote it. When work-
ing with or thinking about code, programmers thus often resort
to concrete values and execution traces to make the abstract more
tangible. Such approaches like exploration scripts in a workspace
or unit tests of a test suite are already very helpful, but still lack a
convenient conceptual and technical integration into core develop-
ment tools, leaving such examples and the code they refer to too
far apart.

Example-based programming like Babylonian Programming aims
at offering the benefits of concrete, live examples directly in pro-
gram editors, interleaved with the code it supports, to shorten
feedback loops and reduce the need for context switches coming
with changing tools.

However, Babylonian Programming and its tools currently focus
on a local perspective on code exploration, but do not yet extend
to messages sent outside a particular unit of code and with that do
not yet directly support feedback on more dynamic properties of a
running program / system.

We developed Probe Log, a Babylonian Programming tool that
extends the benefits of example-based programming to scenarios
that span across multiple procedures. It provides a linear view on
the dynamics of evolving examples beyond a local perspective.

CCS CONCEPTS
• Software and its engineering→ Development frameworks
and environments.

This work is licensed under a Creative Commons Attribution International
4.0 License.

<Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0755-1/23/03.
https://doi.org/10.1145/3594671.3594679

KEYWORDS
live programming, exploratory programming, example-based pro-
gramming, babylonian programming, examples, squeak, smalltalk
ACM Reference Format:
Eva Krebs, Patrick Rein, Joana Bergsiek, Lina Urban, and Robert Hirschfeld.
2023. Probe Log: Visualizing the Control Flow of Babylonian Programming.
In Companion Proceedings of the 7th International Conference on the Art,
Science, and Engineering of Programming (<Programming>’23 Companion),
March 13–17, 2023, Tokyo, Japan. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3594671.3594679

1 INTRODUCTION
While code itself is abstract, developers often think about it in
relation to concrete values. This can happen in several ways. A
programmer may run a program and observe the concrete live state.
A programmer could look at trace data shared by users or other
developers. A programmer might look at an existing test base.

While there are many more ways in which developers may make
use of more concrete data for abstract code, all ways aim to pro-
vide concrete feedback through example-like concepts. Accessing
these examples often requires some sort of context switch such as
switching to a browser and searching for a fitting tutorial. It might
also require the additional mental mapping of concrete values to
code if the example can only be found outside the programming
environment. Babylonian Programming aims to provide dynamic
concrete feedback as close to the source as possible. This mitigates
having to switch tools or mapping values mentally. Programmers
can add and inspect examples directly in the code editor itself.

However, current Babylonian Programming tools are focused on
a local perspective of a small part of the system, on a micro-view.
Yet many programs consist of an interplay of several procedures.
Current tools would at least require several context switches and
at worst keeping in mind all relevant parts of the system as part
of a complex mental model to get feedback on the behavior of
multi-procedure programs or systems.

To provide feedback on multi-procedure programs without addi-
tional cost such as context switches, we developed an extension for
the Babylonian Programming system Babylonian/S. The extension
lets developers navigate the control flow of a given example.

61

https://orcid.org/0000-0002-9089-7784
https://orcid.org/0000-0001-9454-8381
https://orcid.org/0000-0003-4744-0874
https://orcid.org/0009-0002-8573-3627
https://orcid.org/0000-0002-4249-6003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3594671.3594679
https://doi.org/10.1145/3594671.3594679
https://doi.org/10.1145/3594671.3594679
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3594671.3594679&domain=pdf&date_stamp=2023-09-12

<Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan Eva Krebs, Patrick Rein, Joana Bergsiek, Lina Urban, and Robert Hirschfeld

We will first introduce Babylonian Programming, a form of
example-based programming, and the limit of its local-perspective
tools in section 2. We then describe the tool we created to address
this in section 3, how exactly it can be used in a concrete scenario in
section 4, and how it is implemented in section 5. We briefly outline
related work such as other example-based programming tools and
other tools that address the limits of local-perspective tooling in
section 6. The paper will end with a conclusion and possible future
work in section 7.

2 BABYLONIAN PROGRAMMING
The Babylonian Programming system is an Example-based Live
Programming (ELP) system that allows for instant and ubiquitous
access to dynamic information. This dynamic feedback is provided
through two core concepts: examples and example-based widgets.
Examples provide all the information necessary to invoke the func-
tion or method, including the arguments and in the case of a method,
a receiver. Further, programmers can designate for which program
elements they would like to see dynamic information by adding
widgets to expressions in code. If at least one example is available,
these widgets can provide dynamic feedback based on the exam-
ple. The most common type of widget is called a probe. A probe
traces the values of the selected expression during the execution
of an example and the corresponding UI widget displays the value
directly within the editor. In combination, examples and probes
allow for instant access to dynamic information, as examples make
every function or method executable in the system and thereby
remove the need for lengthy executions of the whole program to
get dynamic information. Through probes, programmers can get
ubiquitous feedback on dynamic information right within the code
editor. By placing probes on any expression in the program, they
can directly inspect and explore dynamic state at this point in the
execution.

There are multiple implementations of Babylonian Programming.
The first implementation of Babylonian Programming was written
in JavaScript in the live programming environment Lively4 [9, 12].
This version first introduced the main concepts of Babylonian-
style Programming including examples and widgets such as probes.
Programmers could add examples and widgets through and as
dedicated-UI elements.

Another implementation was created as part of an example-
based live programming plug-in for Visual Studio [11]. The plug-in
was created for polyglot programming, which allows programmers
to use and combine multiple programming languages. To support
polyglot programming, core Babylonian features were implemented
in a language-agnostic way. In contrast to other Babylonian Pro-
gramming environments, examples and probes were added through
code comments instead of actual UI-based widgets.

The tool described in this paper was implemented for another
Babylonian Programming implementation, Babylonian/S.

2.1 Babylonian/S
Babylonian/S is Babylonian Programming system written in Squeak/S-
malltalk [2, 4, 13]. Squeak/Smalltalk is a self-supporting live pro-
gramming environment. Since it is written in a live programming
environment, which aim to provide immediate feedback to enhance

explorability and comprehensibility, Babylonian/S tools also pro-
vide live programming features [14, 15].

In Babylonian/S, examples are always defined for a given method.
There are several types of examples, such as method examples or
script examples. Method examples for instance require developers
to provide concrete values for receiver and arguments that can be
used to invoke the given method, while script examples require a
script that invokes the given method directly or indirectly.

Programmers can attach probes and other widgets to expressions
in the code. Probes can visualize the return value of the selected
expression. Per default, the value is represented by text, but other
visualizations such as images for visual objects is possible. Other
widgets for instance include replacements, which let programmers
replace an expression with a different expression or value, and as-
sertions, which can assert certain properties of the expression. The
probes and other widgets can offer a local perspective on a problem
context as one code browser can only display the probes of single
method and does not provide additional control flow information.

Examples are added through a UI element that is always present
at the top of a method while probes and other dynamic widgets
are added on demand by the programmer. A code browser with
examples and probes can be seen in Figure 1.

2.2 Limits of a Local-Perspective
Babylonian/S provides developers with local insights into the pro-
gram they are working on. This enhances the understanding of a
single code location, such as a single expression. However, at the
same time, understanding the overall program requires informa-
tion about the control flow and thus about the relation between
different code locations. To investigate this relation, programmers
have to reconstruct the control flow from isolated observations at
single locations. Further, even when using an Example-based Live
Programming (ELP) environment, programmers have to switch be-
tween the different locations. Both these challenges go against the
original goals of ELP environments, which are to improve program
comprehension through immediate access to dynamic information.

The following scenario illustrates these challenges of the local
perspective. A team of programmers wants to work on the text
rendering infrastructure of the Squeak/Smalltalk system. Therefore,
they want to understand how a text renderer handles a change in
font in a rich text.

The text rendering infrastructure in Squeak/Smalltalk is based
on Text objects which consist of a string and an array that contains
styling information for each character in the string. The rendering
itself is done by CharacterScanner classes, which process each char-
acter in a text and apply the styling information according to their
rendering method. To understand how the change in font takes
place, the programmers look at the CharacterScanner>>#setFont
method, which is called whenever a change in font occurs, which
can be seen in Listing 1.

To get a first impression of how the font changes take place, the
programmers use a script example to trigger the rendering of a text
that uses two fonts, which can be seen in Listing 2, and put a probe
on the first read of the font instance variable in CharacterScanner
>>#setFont, which is illustrated in Figure 2. The probe shows six
recorded objects, the nil object followed by a font object, followed

62

Probe Log: Visualizing the Control Flow of Babylonian Programming <Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan

Figure 1: A screenshot of Babylonian/S. Examples are defined at the top of the method while probes are added in the code to
visualize it.

Figure 2: Sketch of a situation in which the local perspective provided by probes does not suffice for programmers to understand
the observations. The six objects in the probe are surprising, as the used example only implies two executions of the method.

by two repetitions of the same pattern. The programmers are sur-
prised, as they assumed that there should only be two executions of
the CharacterScanner>>#setFont method corresponding to the two
different fonts in the rendered text.As the font instance variable is

likely uninitialized at first, it is understandable that the nil object
is observed followed by a font object. However, it is unclear to
the programmers why there are two subsequent repetitions of this
pattern, starting with the second time the nil object was recorded.

63

<Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan Eva Krebs, Patrick Rein, Joana Bergsiek, Lina Urban, and Robert Hirschfeld

Listing 1: The setFont method of the CharacterScanner class.
1 C h a r a c t e r S c a n n e r >> s e t F o n t
2 | p r i o r F o n t |
3 " S e t the f o n t and o t h e r emphases . "
4 p r i o r F o n t : = f o n t .
5 . . .

Listing 2: A small script that is used as an entry point for
debugging the rendering loop.
1 t e x t : = ' abc ␣ d e f ' a s T e x t .
2 t e x t
3 a d d A t t r i b u t e : TextFontChange f o n t 2
4 from : 5
5 t o : 7 .
6 " The f o l l o w i n g t r i g g e r s a t e x t r e n d e r i n g . "
7 t e x t asMorph imageForm .

At this point, the local perspective through the probes does not
help programmers any further in investigating this behavior. In-
stead, they would need a “zoomed-out” perspective, showing them
what else happened throughout the example execution and how
the different recordings of the probe relate to the overall example
execution.

3 PROBE LOG
Probe Log offers a new view of a Babylonian example that spans
across multiple procedures. It contains a linear view of all probes
of a given example that lets programmers inspect them ordered
chronologically. This may act as a sort of macro-view of the probed
system, enabling programmers to see information and relations
beyond the local-perspective.

In order to provide easier access to multi-procedure dynamic
feedback, the Probe Log can show a linear list of recorded objects
directly in code browser itself, see Figure 3. It only uses information
that can be gained directly from a given example’s probes and
displays this information in order. Since we get all information that
probes have access to, the Probe Log does not only display text.
The Probe Log retains all reflection features of the probes such as
inspecting the contained values. It also contains links to the code
its values originate from. Also, just as the examples and probes are
updated live when the system changes occur, the Probe Log also
reflects the live updates of its example.

Lanes. The Probe Log can display the information of mutiple
examples. Each examples is visualized in its own lane. A lane con-
tains a list of all probes and their values of a given example trace.
To enhance readability, all values are displayed with the probed
expression, or if provided a label, of the probe they originate from.
Since large examples may contain several probes and traced values,
probes can be hidden if needed.

Log Lines. In order to provide more context on the execution
of a given probe, the Probe Log contains Probe Log Lines in each
example lane. Probe Log Lines are a flame graph that visualize the

execution context of a given probe. There is one vertical bar, or log
line, for each context in the stack. The bars are ordered from left to
right, the innermost context being on the right. While this is not a
complete debugging stack, it provides a general idea of when and
why a probe received values. Also, as programmers may mostly
be interested in methods containing probes, the context bars of
methods that contain a probe are highlighted with a color specific to
each probe. Besides examining the visualization, programmers can
also use the flame graph to get detailed information and navigate
the code. Programmers can explore the flame graph by hovering
over context bars, which are then highlighted to show the lifetime
of the context and shows the name of the method executed in
this context. Programmers can also click on the context bars to
open the method in the code editor. Finally, each line includes a
pause button that when clicked opens a step-wise debugger on the
example execution at the time of the recording of that object.

4 USING PROBE LOG
Probe Log may be used to determine why the probe in the method
CharacterScanner>>#setFont(2.2) recorded so many objects. First,
one may want to roughly determine when during the text rendering
in DisplayScanner these objects were recorded, and thus place a
probe at the beginning of DisplayScanner>>#displayLine: offset :
leftInRun : , which can be assumed to be the first text rendering
method executed.

We then open the Probe Log to understand why CharacterScanner
>>#setFont is executed so often, see Figure 4. The Probe Log shows
all recorded objects in probes in chronological order. To orient
themselves, programmers may look for the probe that was placed
in the top-level text-rendering method by looking at the labels at
the top of each line in the Probe Log. To their surprise, they find
the first line of the probe not at the top of the Probe Log, but in the
middle.

By looking at the stack visualization on the left, they realize that
only the last two objects were recorded as a result of the text ren-
dering method. The visualization shows this, as the red vertical line
represents the top-level text rendering method, which is highlighted
because of the probe in this method. The stack visualization of the
first group of two objects does not include the vertical red line and
thus was recorded in executions of CharacterScanner>>#setFont
that were initiated by some other behavior.

In order to determine the behavior that initiated the suspect
CharacterScanner>>#setFont executions, they investigate the first
recorded value in the Probe Log. They start hovering with their
mouse cursor over the area of the stack visualization in the first
line. They do so from right to left to follow the sender chain. In one
of the first stack frames, they find a method execution on a different
scanner subclass, named CompositionScanner. They click on the
stack frame of the method CompositionScanner>>#composeFrom:
inRectangle: to open it in the browser and continue investigating
its purpose.

5 PROBE LOG IMPLEMENTATION
The Probe Log is shown directly within the code browser as a new
side panel. All visual elements are based on the Morphic UI system
of Squeak/Smalltalk. Multiple examples can be added to the Probe

64

Probe Log: Visualizing the Control Flow of Babylonian Programming <Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan

Figure 3: A screenshot of the Probe Log as part of a code browser in Babylonian/S. The right panel contains the Probe Log while
the panels on the left contain the other code browser elements such as a code editor for a selected method.

Figure 4: A screenshot of the Probe Log implemented in Babylonian/S. The mouse cursor hovers over a stack frame of the third
group of recordings of font objects.

65

<Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan Eva Krebs, Patrick Rein, Joana Bergsiek, Lina Urban, and Robert Hirschfeld

Log, each displayed in its own lane. The example information in a
lane is then visualized vertically on the Probe Log lines.

The Probe Log builds on the example infrastructure already
present in Babylonian/S. Examples in Babylonian/S collect trace
data when executed [13]. This trace data is visualized by the Probe
Log.

The Probe Log requires the following information to support its
features: the recorded object, the recording probe, the stack at the
time of the recording, and a timestamp for the time of recording
within the timeframe of the example execution. The basic Babylo-
nian/S tracing infrastructure already provides the recorded object
and the recording probe. It also provides a basic form of the stack
at the time of the recording in the form of an array of the identity
hashes of the active stack frames. This however is not sufficient for
showing the flame graph and we extended the trace information
with the method selector and the class containing the executed
method. Further, the Probe Log requires a timestamp to sort the
recorded objects within the lanes. Therefore, we added a timestamp
for the time of recording in the form of a simple sequence number
that is incremented on every recording.

To support the pausing of example executions at the time of
a recording, we also make use of the timestamp. Therefore, we
extended the basic tracing infrastructure with a tracing mode in
which the example execution is suspended as soon as a specified
sequence number is generated. Now, when programmers click the
pause button, we pass the sequence number belonging to that log
line to the tracing infrastructure and start another example exe-
cution. This implementation assumes that the example executions
are deterministic, at least in the number and ordering of probe
recordings.

6 RELATEDWORK
There are several tools and techniques that aim to address the limits
of a local perspective similar to the Probe Log.

The first example-based programming environment was Example-
centric Programming [1]. The example-centric programming envi-
ronment features a panel next to a code editor that displays concrete
values for code based on examples. The new panel shows a trace-
like view of the example by showing the system code with concrete
values provided by the example execution. This shares similarities
with Probe Log, as it also provides an ordered view of the overall
system with concrete values. Interestingly, the example-centric pro-
gramming environment does not include a dedicated mechanism
that represents a local perspective but covers fine-grained feedback
through the trace panel.

Two environments support combinations of local and cross-
cutting perspectives: Shiranui [3] and Seymour [6]. Both include a
basic overall trace view by highlighting the statements that have
actually been executed during the execution of an example. In addi-
tion, Shiranui allows programmers to select individual intermediate
run-time states and see the dynamic slice for that value [3]. Sey-
mour also offers a more advanced view in the form of an icicle
plot [8] visualizing the stack over time. Programmers can also use
the icicle plot to focus the local perspective on specific stack frames.
According to the accounts of applying Seymour to student pro-
grams, the icicle plot works well for smaller programs, but does not

scale to larger programs, as it is missing relevant information such
as the names of called procedures [6].

In its basic structure, the Probe Log is also similar to the trace of
outputs in YinYang [10]. This trace of outputs displays the results
of manually placed print -statements and allows programmers to
navigate the code using them.

The Omnicode environment takes a very different approach to
display overall program behavior [5]. Instead of visualizing the
control flow, Omnicode visualizes changes to the complete run-time
state throughout the whole program execution. As this only works
for small programs, Omnicode is primarily designed for beginner
programs. A similar perspective is part of DejaVu [7] for interactive
camera-based programs, but it requires users to explicitly choose
which states should be displayed over time.

7 CONCLUSION
Probe Log provides a dynamic view of probes across several proce-
dures directly in the code editor itself. This allows programmers to
use Babylonian Programming for problems that go beyond a local
perspective. We have demonstrated this with the walktrough of a
specific scenario.

Future Work. While the Probe Log sets recorded objects into
their chronological context, it is still an incomplete view of the
interactions during an example execution. To allow programmers
to investigate and explore overall system behavior, another cross-
cutting perspective for Babylonian Programming systems could be
used such as full call trace views.

Probes share similarities with printf-debugging. Insights gained
from Babylonian Programming and probes could be applied to
printf-debugging and vice versa.

While there are descriptions of scenarios and walktroughs for
Babylonian Programming and its tools, further user studies could be
conducted. The studies could be focused on how to further enhance
Babylonian Programming tools, on discovering use cases and do-
mains in which they are especially helpful, and how programmers
use them.

REFERENCES
[1] Jonathan Edwards. 2004. Example centric programming. In Companion to the

19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC,
Canada, John M. Vlissides and Douglas C. Schmidt (Eds.). ACM, 124. https:
//doi.org/10.1145/1028664.1028713

[2] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley.

[3] Tomoki Imai, Hidehiko Masuhara, and Tomoyuki Aotani. 2015. Shiranui: A
Live Programming with Support for Unit Testing. In Companion Proceedings
of the 2015 ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity, SPLASH 2015, Pittsburgh,
PA, USA, October 25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM,
36–37. https://doi.org/10.1145/2814189.2817268

[4] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan C. Kay. 1997.
Back to the Future: The Story of Squeak - A Usable Smalltalk Written in Itself. In
Proceedings of the 1997 ACM SIGPLANConference on Object-Oriented Programming
Systems, Languages & Applications (OOPSLA ’97), Atlanta, Georgia, October 5-
9, 1997, Mary E. S. Loomis, Toby Bloom, and A. Michael Berman (Eds.). ACM,
318–326. https://doi.org/10.1145/263698.263754

[5] Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A Novice-Oriented Live
Programming Environment with Always-On Run-Time Value Visualizations. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology, UIST 2017, Quebec City, QC, Canada, October 22 - 25, 2017, Krzysztof
Gajos, Jennifer Mankoff, and Chris Harrison (Eds.). ACM, 737–745. https://doi.
org/10.1145/3126594.3126632

66

https://doi.org/10.1145/1028664.1028713
https://doi.org/10.1145/1028664.1028713
https://doi.org/10.1145/2814189.2817268
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/3126594.3126632
https://doi.org/10.1145/3126594.3126632

Probe Log: Visualizing the Control Flow of Babylonian Programming <Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan

[6] Saketh Kasibatla and Alessandro Warth. 2017. Seymour: Live Programming for
the Classroom. https://harc.github.io/seymour-live2017/ Accessed: 2023-01-19.

[7] Jun Kato, Sean McDirmid, and Xiang Cao. 2012. DejaVu: Integrated Support
for Developing Interactive Camera-Based Programs. In Proceedings of the 25th
Annual ACM Symposium on User Interface Software and Technology (Cambridge,
Massachusetts, USA) (UIST ’12). Association for Computing Machinery, New
York, NY, USA, 189–196. https://doi.org/10.1145/2380116.2380142

[8] J. B. Kruskal and J. M. Landwehr. 1983. Icicle Plots: Better Displays for Hierarchical
Clustering. The American Statistician 37, 2 (1983), 162–168. http://www.jstor.
org/stable/2685881

[9] Jens Lincke, Patrick Rein, Stefan Ramson, Robert Hirschfeld, Marcel Taeumel,
and Tim Felgentreff. 2017. Designing a live development experience for web-
components. In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Programming Experience, PX/17.2, Vancouver, BC, Canada, October 23-27, 2017,
Luke Church, Richard P. Gabriel, Robert Hirschfeld, and Hidehiko Masuhara
(Eds.). ACM, 28–35. https://dl.acm.org/citation.cfm?id=3167109

[10] Sean McDirmid. 2013. Usable live programming. In ACM Symposium on New
Ideas in Programming and Reflections on Software, Onward! 2013, part of SPLASH
’13, Indianapolis, IN, USA, October 26-31, 2013, Antony L. Hosking, Patrick Th.
Eugster, and Robert Hirschfeld (Eds.). ACM, 53–62. https://doi.org/10.1145/
2509578.2509585

[11] Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bastian König, Kolya
Opahle, Nico Scordialo, and Robert Hirschfeld. 2020. Example-based live pro-
gramming for everyone: building language-agnostic tools for live program-
ming with LSP and GraalVM. In Proceedings of the 2020 ACM SIGPLAN In-
ternational Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software, Onward! 2020, Virtual, November, 2020. ACM, 1–17.
https://doi.org/10.1145/3426428.3426919

[12] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.
2019. Babylonian-style Programming - Design and Implementation of an Integra-
tion of Live Examples Into General-purpose Source Code. Art Sci. Eng. Program.
3, 3 (2019), 9. https://doi.org/10.22152/programming-journal.org/2019/3/9

[13] Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus, and Robert
Hirschfeld. 2019. Implementing Babylonian/S by Putting Examples Into Contexts.
In Proceedings of the Workshop on Context-oriented Programming - COP '19. ACM
Press. https://doi.org/10.1145/3340671.3343358

[14] Steven L. Tanimoto. 1990. VIVA: A visual language for image processing. J. Vis.
Lang. Comput. 1, 2 (1990), 127–139. https://doi.org/10.1016/S1045-926X(05)80012-
6

[15] Steven L. Tanimoto. 2013. A perspective on the evolution of live programming.
In Proceedings of the 1st International Workshop on Live Programming, LIVE 2013,
San Francisco, California, USA, May 19, 2013, Brian Burg, Adrian Kuhn, and Chris
Parnin (Eds.). IEEE Computer Society, 31–34. https://doi.org/10.1109/LIVE.2013.
6617346

67

https://harc.github.io/seymour-live2017/
https://doi.org/10.1145/2380116.2380142
http://www.jstor.org/stable/2685881
http://www.jstor.org/stable/2685881
https://dl.acm.org/citation.cfm?id=3167109
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/3426428.3426919
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.1145/3340671.3343358
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/LIVE.2013.6617346

	Abstract
	1 Introduction
	2 Babylonian Programming
	2.1 Babylonian/S
	2.2 Limits of a Local-Perspective

	3 Probe Log
	4 Using Probe Log
	5 Probe Log Implementation
	6 Related Work
	7 Conclusion
	References

