
SophieScript - Active Content in Multimedia Documents

Jens Lincke1 Robert Hirschfeld1 Michael Rüger2 Maic Masuch3

1 Hasso-Plattner-Institut, University of Potsdam
{jens.lincke, hirschfeld}@hpi.uni-potsdam.de

2 Impara GmbH, Magdeburg
michael.rueger@impara.de

3 University of Applied Sciences, Trier
masuch@fh-trier.de

Abstract

Active content in multimedia documents helps the reader
to grasp the implications of nonlinear and complex systems
that are difficult to understand in a text-based description.
The readers are able to make their own experiments by
changing the underlying rules of these systems. The mul-
timedia authoring environment Sophie has limited capabil-
ities for authoring active dynamic contents. For that reason
we integrated a tile scripting system based on Tweak Etoys
in Sophie. In SophieScript scripts can be embedded into
the text and the reader changes them via direct graphical
manipulation. With the implemented tile scripting system
the user can easily create dynamic content and, at the same
time, make use of the multimedia and text capabilities of
Sophie.

1 Introduction

Standard multimedia documents are typically composed
of text, images, audio, and video. Scripting languages are
one of many paradigms to create (inter-)activity in these
documents by synchronizing, animating, and connecting
existent contents. Scripting languages can further be used
to create interactive content simulations or games. When
scripts are used this way, they are part of the content, but in
an invisible way; only their effects are visible to the reader
of the documents. In Active Essays [7] the scripts them-
selves become the content. They are shown to the user,
they can be changed, and they can change other contents.
So, scripts become an active content that enables the users
to make their own experiments by not only changing some
parameters, but by changing the underlying code of the dy-
namic systems (e.g., like simulations of epidemics [14]).
By playing and experimenting with scripts users have an

immersive way to explore a given environment. We want to
bring that kind of active content to the authoring environ-
ment Sophie [21].

Sophie combines multimedia content with advanced text
processing features, but it has limited capabilities for au-
thoring dynamic content. Dynamic contents in Sophie is
created by Timelines, Triggers, and Actions. These tools
enable the user to create simple dynamic behavior in an
easy but restricted way. Actions (like switching to a page or
displaying a frame) are predefined and can be triggered by
events (like a mouse click). A scripting language or system
would widen the range of possible dynamic content by al-
lowing more complex operations like control structures and
variables. The problem is that textual scripting languages
(like JavaScript) are not suitable for Sophie’s target users,
because Sophie defines itself as a tool to make the creation
of multimedia books possible without programming.

A solution to create complex dynamic content without
using a programming language is Etoys [9]. Etoys is a con-
structivist tool for children and uses visual programming to
bring life into a world with objects by creating scripts out
of graphical building blocks called tiles.

Scripting in other multimedia documents like Flash [2]
or HTML documents distinguishes between author and
reader mode. This means that scripts are created by an au-
thor and can change, generate, and present content at run-
time. This is not sufficient for media formats like Active
Essays [7]. In Active Essays the reader should be able to
experiment with the rules of dynamic systems by changing
them to get a better and deeper understanding. This idea is
based on constructivist theories by Piaget and Papert [16].
To support this, a scripting environment for active content
has to enable the reader of a document to change scripts in
a user-friendly way.

Readers of standard multimedia documents only see the
effects of scripts, but cannot change them. Active content
demands that the user has full freedom of changing the dy-

Sixth International Conference on Creating, Connecting and Collaborating through Computing

0-7695-3115-6/08 $25.00 © 2008 IEEE
DOI 10.1109/C5.2008.12

21

namic content and should not be restricted to alter some pa-
rameters (like configuring a simulation). The user should
be able to experiment with the whole script and change it
to understand and learn from it. To make this possible, our
system not only allows the manipulation of content through
scripting, but scripts themselves become content and are
changeable at runtime by the reader.

The reading of documents with active contents should
not be limited to people who are able to read and write in
a specific programming language. The use of tile scripting
allows the reader to experiment with scripts without need-
ing to know a programming language and be familiar with
its syntax. This is why we used a visual programming lan-
guage like Etoys: the main advantage of tile scripting is the
elimination of syntax errors. To lower the barrier of pro-
gramming for the user we choose Tweak Etoys as a script-
ing system, which is also used in TinLizzie [15].

The remainder of the paper is organized as follows: Sec-
tion 2 gives a short overview of Sophie, Tweak Etoys, and
our integration of these two systems: SophieScript. Script-
ing of active content is divided into two main aspects: The
scripting of Content is described in Section 3 and scripts as
content are covered in Section 4. Section 5 shows an ex-
ample application of active content, in which a turtle draws
a tree. Section 6 discusses related work. The last Section
draws a summary and gives an outlook on future work.

2 Integration of Sophie and Etoys

SophieScript is based on two systems: it integrates the
tile scripting from Tweak Etoys into the Sophie multimedia
authoring environment. Both systems are implemented in
Squeak [4].

2.1 Sophie

Sophie [21] is an all-purpose tool for dealing with media.
It allows users to easily create books that contain any sort of
media on hand – text, images, sounds, videos, and anima-
tions. Sophie does for media what a physical book does for
text and images: With Sophie, authors can create multime-
dia books. You might think of it as a wrapper for anything
digital, but it is more than that. Sophie differs from previ-
ous platforms for electronic reading by giving the author as
much control over the form as over the content.

Sophie is media-agnostic: All media is the same in-
side of Sophie. You can create a book based on a long
piece of text, like a traditional novel. Or you can create
a book based on a series of photographs, something like a
slideshow, adding narration or a soundtrack to play with the
rhythm. Sophie aims at having a low enough threshold for
non-professional users to create media-rich dynamic con-
tents without resorting to programming. Sophie’s current

versions are essentially closed applications, whereas Etoys
tries to open up the whole system to the user for exploration.

2.2 Tweak Etoys Tile Scripting

The Tweak Etoys scripting system is a visual program-
ming with graphical building blocks called tiles. It is im-
plemented in Tweak [17] and was planned as a successor of
Squeak Etoys [9].

We use Tweak Etoys as a scripting language, because it
allows the user friendly creation and editing of scripts with
the elimination of syntax errors. This is necessary, because
scripts are shown to and edited by the author but also by the
reader of the documents, who must be able to change the
scripts without knowing the scripting language.

Tweak Etoys integrates itself deep into the underlying
system and allows the creation of scripts, which get com-
piled as normal smalltalk methods. It supports variables,
conditionals, loops, recursion, and can use the full event ar-
chitecture of Squeak.

These features make it more powerful than Squeak Etoys
and Scratch [13], but at the same time more difficult to
handle. It is no full featured scripting language, because
it misses features like local variables, return statements,
and arguments for self-defined scripts. But these features
could be added later. The user-friendliness of the scripting
through drag and drop is more important than using a fea-
ture complete scripting language that the user is not able to
read and write and with which he can not safely experiment.

2.3 SophieScript

SophieScript is the prototypical integration of the tile
scripting system of Tweak Etoys into Sophie. The system
allows the scripting of Sophie’s content and makes scripts
themselves content. These scripts are unlike other scripts
in multimedia documents visible to the reader and can be
changed at runtime by the reader. The first aspect of Sophi-
eScript is the scripting of content, that means that the scripts
provide dynamic behavior for content in Sophie through the
use of an indirect layer of scripting objects called Scriptees.
The second aspect is that scripts are presented to the reader,
are part of the text, and can be changed by the reader
through direct graphical manipulation in the typical Etoys
manner.

3 Scripting of Content

Finding a suitable model of scripting content in Sophie
is difficult, because it was created as a productive tool and
not like Etoys with a simple model for scripting in mind.
Squeak Etoys scripts only one kind of object: the Player;
and uses all kinds of Morphs [12] as costumes for that

22

Figure 1. Screenshot of Sophie

player. The structure and application programming inter-
face (API) of objects in Sophie are not suited for scripting
them directly, because they are designed to only work well
with tools but not stand alone. As a solution to this problem,
we introduce scriptees as an indirect scripting layer.

3.1 Model of Content in Sophie

Books in Sophie consist of pages with text, images, au-
dio, and video. An example book opened in Sophie is
shown in Figure 1. The text of a book flows into series
of frames that can be distributed on a spine of pages. This
allows multicolumn and other forms of layout as well as au-
tomatic distribution of long contents on many pages. This
distinguishes Sophie from other multimedia authoring sys-
tems that put graphics into their main focus and only allow
text in non-flowing frames. Images and videos are also po-
sitioned with frames, which makes them the primary graph-
ical object in Sophie. Text is represented as nodes in a con-
tent tree and all contents can be automatically formatted by
using styles.

3.2 Defining a Scripting API

There is no API to directly interact with Sophie objects,
because most operations need other objects like an editor or
importer that do the actual work. This ensures that every
change of state goes through the application, so that plugins
and tools can react on it.

To define a secure and user-friendly scripting API, we
use special objects for scripting called “scriptees” as a layer
of abstraction. These scriptees provide a scripting API and
hide the system API of the objects from the user. The ob-
jects themselves could implement an API for scripting as
long as there are no naming conflicts, but there is no stan-
dardized way to separate and secure method protocols in
Squeak.

Scriptees resemble players in Etoys, the main difference
is that they are no graphical objects and simply provide
the infrastructure for scripting. Players stand on their own
in contrast to scriptees, which wrap around other objects.
They are only helper objects for them. For efficiency, the
objects in Sophie that represent the model are no Tweak
objects. Tweak EToys can only work with Tweak objects,
because they provide the basic scripting functionality. This
is the technical reason for separating the scripting aspects
of those objects into scriptees.

3.3 Infrastructure for Scripting

Scriptees should be Sophie objects and Tweak objects at
the same time. Because there is no multiple inheritance in
Squeak, the SophieScriptee class is subclassed from COb-
ject and implements the protocol of the class SophieObject
so that it can live in both worlds. This enables scriptees
to use the asynchronous event system and allows them to
be scripted and, at the same time, integrated into the seri-
alization framework of Sophie. Like in Squeak Etoys the

23

Figure 2. Relation of Scriptees to Sophie Ob-
jects

scripts themselves are compiled as methods to uni-classes,
which are anonymous classes that enable instance specific
behavior, so that each scriptee can have its own scripts (see
Figure 2).

The scriptee delegates all state changes to its target ob-
ject and retrieves states from its target through the use of
Tweak’s virtual fields. These virtual fields cannot automat-
ically generate the necessary change events themselves, be-
cause they cannot look into normal Sophie objects, which
are no Tweak objects. The translation of state changes in
Sophie to events for scripting is needed to update the val-
ues in the viewers and inspectors of scriptees. This prob-
lem can only be tackled individually, because there is no
automatic generation of events. When variables change in
normal Squeak objects, these events have to be manually
signaled in the appropriate places (like editors). The im-
plementation for the class FrameScriptee uses the existing
events in the user interface to work around that problem, but
this is no general solution for other Sophie objects. A gen-

eral but not so efficient solution would be to generate the
change events through polling mechanisms.

3.4 Integration with existing Sophie Tools

Sophie provides predefined actions like “Go To Frame”
or “Toggle Page“, but the users cannot define their own ac-
tions. SophieScript adds ScriptActions to connect the trig-
ger with Tile-Scripts.

TileScripts can be Sophie content in two different ways.
They can be embedded into text or act directly as frame
content. When they are frame content, they behave like in
Etoys. That means they are arranged by the user and behave
strictly like graphical objects. When the script is part of the
content tree, they flow with the text like embedded images.

The scripting user interface, as shown in Figure 3, inte-
grates the Etoys viewer into the Sophie docs. The halo of
Etoys is replaced in Sophie by a HUD (Head Up Display)
and handles. The HUD provides editors for styles and other
object related content directly at the object and not in a tool
bar. The handles position and resize the frame. The proper
use of these HUD and handles in SophieScript should be
addressed in future work.

4 Scripts as Content

Scripts in Active Essays are not only capable of modify-
ing and creating other content, but are also content them-
selves. These scripts are part of the text and the reader
can edit and run them for experimentation. Thus, in So-
phieScript the scripts become active contents.

4.1 Tile Nodes

To unify scripts and text in Sophie, we decided to rep-
resent scripts as content nodes of the book. This is ana-
log to the decision to represent scripts with tile players in
Tweak Etoys, because players are the main building mate-
rial in Tweak and content nodes are the building material
of text in Sophie. Thus, the scripts are represented as tile
nodes to unify the handling of text and scripts. Tile nodes
are book content nodes, which are used in Sophie to repre-
sent structured text. This is different to scripting content in
HTML, where the dynamic behavior is represented in a dif-
ferent language as the content itself. The representation of
scripts as content nodes allows the seamless integration of
scripts into the storage management with mechanisms like
copy and paste. Another advantage is that the nodes make
the script independent of a parser and compiler of a spe-
cific programming language. It is conceivable that they can
be transformed and adapted to platforms like web browsers,
without the need to implement a full Smalltalk environment
there.

24

Figure 3. The Scripting User Interface

The representation of scripts as nodes leads to a separa-
tion of the user interface from its persistent model. In text-
based scripting languages this is the source code. This sepa-
ration allows the use of a graphical user interface (GUI), like
the drag and drop behavior of tile scripting, to edit scripts.

4.2 User Interface

We experimented with the Sophie text compositing to
display the scripts and to integrate the rendering of scripts
into the Sophie architecture. This would have enabled the
use of high-quality font compositing and rendering. But
the results where not satisfying, because the architecture
of editing and compositing text was too different from the
graphical nature and the drag and drop user interaction of
tile scripts.

The content node structure itself is not suitable for imple-
menting drag and drop, because it is only loosely coupled
with the graphical structure. To change this, the graphical
features of Tweak would have to be reimplemented into So-
phie. Since this is not practical, we use the existing Tweak
tile player and costumes for the user interaction. This cre-
ates a need to synchronize the player structure with the tile
node structure, which represent the scripts. For the synchro-
nization of the node with the player hierarchy (see Figure 4),
the composing and event mechanisms in Tweak could be
utilized. So, a tree of tile players is generated and updated

from the tile nodes, and when the user changes the graphical
structure of the players, the nodes get updated.

4.3 Building Blocks of Scripts

Beside nodes and players, there are other objects that
represent the building blocks of scripts at a time. These
semantic elements of scripts are represented by objects of
four different class hierarchies:

1. BookContentTileNodes provide the elments of the
model of the script in Sophie and are used for seri-
alisation of scripts.

2. CTilePlayers are responsible for user interaction, for
example the application of the types of a tile to ensure
that scripts can only be edited in syntactically correct
ways.

3. CTileCostumes display the elements of the script, they
can be seen as a view on the model.

4. CParseNodes are used by the CTilePlayers building a
parse tree, which gets compiled into a Squeak Method.

The hierarchies provide the elements of trees, which are
transformed into each other. Since the requirements of the
different contexts differ, there is only a loose mapping of

25

Figure 4. Bidirectional Mapping of the TileNode Class Hierarchy and TilePlayer Class Hierarchy

Figure 5. Dataflow of a Script

elements. The costume tree has much more elements than
the player tree, because the costumes contain graphical ele-
ments (e.g. buttons and other widgets), which have no cor-
respondence in the model of the script. The conversion be-
tween these representations for a script are shown in Fig-
ure 5.

5 Example: Drawing a Tree

To illustrate the possibilities and limits of the imple-
mented scripting system, we choose turtle graphics as an
example for active content. Turtle graphics were a part of
Logo [16] and are also part of Etoys.

An example of active content in a book is shown in Fig-
ure 6. The script in this example recursively draws a tree
and shows that the script, the object and the final result are

equally valid content for the user. The user can make exper-
iments by playing with the script to gain an understanding
of concepts like recursion, and to produce interesting graph-
ics.

The turtle in Figure 6 is an image which is scripted to re-
cursively draw a tree. The scripts can be started by clicking
on marked text.

All scripts in these example belong to the turtle frame.
They provide default settings, and thus the user can ex-
periment and go back to a defined state. This has to be
done by the author, because there is no distinction between
the author and reader mode in the scripting environment.
Since such maintenance scripts are not as interesting to the
reader as the script with the tree drawing algorithm, they
are hidden by default and can be displayed by clicking on
marked text. To execute the scripts, other marked text can
be clicked. This is an application of ScriptActions: the
script is executed when a mouse down event is triggered
on the marker.

6 Related Work

The first Active Essays from Alan Kay and Ted Kaehler
covered evolution [7, 6] and allowed the experimentation
with evolutionary algorithms. They used a web browser
for the textual and graphical content and contained sepa-
rate files for execution in Glyphic Script [11] and Hyper-
talk [22]. Later, the evolution essay was redone as an Etoys
Project in Squeak [8]. Other authors experimented with
Active Essays, too: Resnick and Silverman made an essay
about exploring emergence [18] using a web browser and
Java applets; Guzdial and Greenlee made a series of essays
about music [3] using Squeak.

The TinLizzie WysiWiki [15] uses the Tweak Etoys as
scripting system in a collaborative multimedia and scripting
environment. The multimedia content is stored in the Open

26

Figure 6. A script drawing a tree

Document Presentation (ODP) format and the scripts are
stored as Smalltalk source code in attributes of elements.
OpenOffice preserves these attributes, so that the document
can be edited without losing the scripts added by TinLizzie.

In books and other texts, programs are printed as listings
of code with a special format. In HTML the pre-tags are of-
ten used to insert code that the user should read. Scripts that
should be executed by the browser to change the content or
its presentation, are inserted or referenced in script-tags.

Documents that demonstrate the effects of JavaScript
have to insert the code into the document two times: first,
as human readable text and second, as the real script. This
allows the user to read and execute the script, but not to
change it. A way to solve this issue is to create an interpreter
in JavaScript for a language like shown in LogoWiki [1] or
to use the eval function of JavaScript to execute JavaScript
code at runtime as used in a JavaScript shell [19].

LogoWiki implements a Logo interpreter in JavaScript
and integrates it into a simple JavaScript-based wiki [10].
Thus, active content is possible in standard environments
like a web browser. The Lively Kernel [5] shows that
Morphic like environments can also be implemented with
JavaScript, so Etoys in a web browser is not that far away
any more.

7 Summary and Outlook

To enable authors to create Active Essays in Sophie, So-
phieScript allows the integrated creation of active content
with direct graphical user interaction. Scripts can change
content and, at the same time, be changeable by the users
themselves.

The objects in Sophie are indirectly scripted via
scriptees, to provide a clean and secure scripting API.

The scripts can be content of frames or flow with the text,
when they are inserted in the content tree.

They are represented by content nodes, so that they can
be integrated into the Sophie architecture like the storage
mechanism.

The Etoys tile scripting can benefit from adding features
like local variables, arguments for scripts, return values, and
collections to close the gap to textual scripting languages.
These concepts are addressed by the architecture, but miss-
ing from the user interface, because they are in conflict with
the global drag and drop of tiles. Their integration would
allow to convert the textual script and graphical tile script,
back and forth.

A bidirectional conversion between textual and graphical
scripts (e.g., like Universal Tiles in the Etoys Evolution Es-
say [8]) would enable the advanced user to author quickly

27

and freely, without losing the user-friendliness of the graph-
ical interaction when needed.

Etoys is a prototype-based language [20]. Scripts define
behavior directly for objects and behavior can be general-
ized through parent-child relationships. To adapt this for
SophieScript, the existing inheritance relations of objects in
Sophie, like template and style hierarchies can be used. An
alternative is to model this prototype relation explicitly, as
done in Squeak Etoys.

At present there is only a simple scripting API imple-
mented for Frames. There are other classes and some fea-
tures of the application itself which would need some script-
ing API. The integration of the application commands into
the tile scripting system would allow the automation of the
application.

The user interface for scripting is only a placeholder, it
does not use the full possibilities of Sophie’s HUDs and
flaps.

There is a performance impact from scripts that change
the model of the book in such a way that the text has to be
reflown. In the worst case this can lead to the invalidity of
every page in the book and this can take some time. The so-
lution to restrict the scripting on display pages would solve
this problem but only at the cost of express-ability.

SophieScript shows that active content can be a valuable
component of Sophie to enable the integrated creation of
Active Essays.

8 Acknowledgements

We thank Bert Freudenberg for sharing his invaluable in-
sights into Tweak and Etoys, Bernd Eckardt for his fruitful
discussions on scripting in Sophie, and Philipp Engelhard
and Stefanie Quade for their comments on an early draft.

References

[1] Logo wiki. as of Oct 06, 2006, retrieved http://www.
logowiki.net via http://www.archive.org/.

[2] J. Allaire. Macromedia Flash MX—A next-generation rich
client. March 2002.

[3] M. Guzdial and J. Greenlee. A Computer Music Implemen-
tation Course Using Active Essays. 2002.

[4] D. Ingalls, T. Kaehler, J. Maloney, Scott, and W. A. Kay.
Back to the future: the story of Squeak, a practical Smalltalk
written in itself. ACM SIGPLAN Notices, 32(10):318–326,
1997.

[5] D. Ingalls, T. Mikkonen, K. Palacz, and A. Taivalsaari.
Sun labs lively kernel. as of Oct 12, 2007, http://
research.sun.com/projects/lively/.

[6] T. Kaehler. Evolution Part II. as of Aug 8, 1996,
retrieved http://www.research.apple.
com/research/proj/learning_concepts/
evolution_ii/evolution_ii.html via
http://web.archive.org.

[7] T. Kaehler and A. Kay. Evolution. Version 4.4, Nov 22,
1995, retrieved http://www.research.apple.
com/research/proj/learning_concepts/
evolution_active_essay/evolution.html via
http://web.archive.org.

[8] A. Kay. Active essay about evolution. as of Aug 06
2007, http://www.squeakland.org/whatis/a_
essays.html.

[9] A. Kay. Squeak etoys authoring and media. as of
Aug 01, 2005, http://www.squeakland.org/pdf/
etoys_n_authoring.pdf.

[10] A. Kay. A “little demo“. email to olpc-software
mailing list, Apr 10, 2006, http://www.redhat.
com/archives/olpc-software/2006-April/
msg00035.html.

[11] M. Lentczner. Glyphic script. In OOPSLA ’94: Proceed-
ings of the ninth annual conference on Object-oriented pro-
gramming systems, language, and applications [20], pages
104–106.

[12] J. Maloney. An introduction to morphic: The squeak user in-
terface framework. Squeak: OpenPersonal Computing and
Multimedia, 2001.

[13] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, and
M. Resnick. Scratch: a sneak preview [education]. Proceed-
ings of the Second International Conference on Creating,
Connecting and Collaborating through Computing, pages
104–109, 2004.

[14] Y. Ohshima. Kedama: A GUI-Based Interactive Massively
Parallel Particle Programming System. Visual Languages
and Human-Centric Computing, 2005 IEEE Symposium on,
pages 91–98, 2005.

[15] Y. Ohshima, T. Yamamiya, S. Wallace, and A. Raab. Tin-
lizzie wysiwiki and wikiphone: Alternative approaches to
asynchronous and synchronous collaboration on the web. In
C5 ’07: Proceedings of the Fifth International Conference
on Creating, Connecting and Collaborating through Com-
puting, pages 36–46, Washington, DC, USA, 2007. IEEE
Computer Society.

[16] S. Papert. Mindstorms: children, computers, and powerful
ideas. Basic Books, 1980.

[17] A. Raab. Tweak project wiki, 2005. as of Juni 26, 2007,
http://www.tweakproject.org.

[18] M. Resnick and B. Silverman. Exploring emergence.
as of 04 Feb, 1996, http://llk.media.mit.edu/
projects/emergence/.

[19] J. Ruderman and T. Mielczarek. Javascript shell. as
of Oct 30, 2005, https://www.squarefree.com/
shell/.

[20] R. B. Smith. Prototype-based languages (panel): object
lessons from class-free programming. In OOPSLA ’94: Pro-
ceedings of the ninth annual conference on Object-oriented
programming systems, language, and applications, pages
102–112, New York, NY, USA, 1994. ACM Press.

[21] B. Stein and D. Visel. Sophie homepage. as of Aug 06,
2007, ,http://www.sophieproject.org/.

[22] K. Wheeler. Hypertalk: The language for the rest of us,
2004.

28

