2. Sino-German Workshop on
Cloud-based High Performance Computing

Programming in the Cloud
Context-oriented Programming for Self-supporting
Development Environments
Jens Lincke and Robert Hirschfeld

Software Architecture Group
Hasso-Plattner-Institut Potsdam
www.hpi.uni-potsdam.de/swa

0 2012-10-24

Outine L

1. Lively Webwerkstatt:
A Development Environment in the Cloud

2. Lively Parts: Program Objects Directly

3. ContextJS: Evolving Self-supporting Development
Environments at Run-time

Lively Kernel ﬂ

m Web-based development and runtime environment

m Lively Kernel's Promise:

"Where ever there is Web, there is authoring"

http://lively-kernel.org/

Lively Wiki

m Metaphor
- "A Wiki of active objects that can be
programmed by wires and tiles" [Krahn 2008]

Storing and Subversion
Versioning

Authentication
and Authorization

HTTP/WebDAV Interface

Web server

Runtime
Environment,
Application Logic, Lively Wiki
Grahpical User .
Interface runtime
Web browser

http://lively-kernel.org/repository/webwerkstatt/demos/LivelyWikiPresentation.xhtml

Lively Webwerkstatt

m Lively Kernel based Wiki
m Web-based Development Environment

m Core idea:
o Allow authors to not only change content,
but to shape their tools as they are using them

m Share their ideas and tools directly

Webwerkstatt [e

————
- [OR E

http://lively-kernel.org/webwerkstatt

— Self-sustaining Lively Kernel Development

Parts and PartsBin ﬂ

m Shared Repository of Lively Parts

m Direct object manipulation

m Deep copying of objects

(Meta-circular) Tools in PartsBin ﬂ

m Bootstrapped to higher level development cycle

m Examples
o Object Editor
o PartsBin Browser
0 Inspector
0 Method Finder

m Tools are created as Parts and modified like every other
item in the PartsBin

Self-supporting Development Environments ﬂ

Examples: Smalltalk, Self, Emacs, Squeak

Evolve the environment while it in use
Direct and interactive development
But: Changes can break the system

persistence

bootstrap

Classes

Tt

depend

Objects

feedback

Environment

Separate Runtime Environments

m Development tools run in a separate environment
o Work on static code
0 Bootstrapped by external code

m Interprocess communication
vs. direct access to objects

bootstrap bootstrap

persistence

Classes Classes
depend , ‘ depend
Tools | Objects
Development Runtime

Environment feedback Environment

Using Scoped Behavioral Adaptations for
Evolving Self-supporting Development Environments

m Use Context-oriented Programming (COP) layers to adapt core classes
and methods at run-time

m Changes affect only behavior of
objects under construction persistence

bootstrap

DevlLayer

Objects

Environment

Example 1 — Visualizing Events

cop.create('ShowMouseMovelLayer').refineClass(Morph, {
onMouseMove: function(evt) {
show(evt.mousePoint)
return cop.proceed(evt)
s
iD)

ShowMouseMovelLayer.beGlobal();
ShowMouseMovelLayer .beNotGlobal();
this.get('DebugArea’).setWithLayers([ShowMouseMovelLayer])

10

Example 2 — Text Coloring

Hello World

cop.create('DevLayer').refineClass(lively.morphic.Text, {
processCommandKeys: function(evt) {
var key = evt.getKeyChar();
if (key) key = key.tolLowerCase();

if (evt.isShiftDown()) { // shifted commands here...

switch (key) {

case "5": { this.emphasizeSelection({color:
case "6": { this.emphasizeSelection({color:
case "7": { this.emphasizeSelection({color:
case "8": { this.emphasizeSelection({color:

}
}

return cop.proceed(evt);

D)

Color.black}); return true; }
Color.red}); return true; }

Color.green}); return true; }
Color.blue}); return true; }

11

Example 3 — Developing Autocompletion

this.onMouseDown

cop.create('AutoCompletionLayer').refineClass(lively.morphic.Text, {
onKeyPress: function(evt) {
var key = evt.getKeyChar();
if (key.match(/\w/)) {
this.hideWordCompletionMorph();
return;
¥
var range
var cursor

this.getSelectionRange()
range[Q];

if (cursor > 0) {
var lastWord;

1f (lastWord = this.getLastWord()) {
lastWord += key // weird errors when we proceed before our code

1

12

Development Layers

m Evolving tools in self-supporting development environments
is direct and interactive

m Changing core parts can accidentally break the system

m We applied Context-oriented Programming to @
self-supporting development environments
o0 Encapsulate changes into layers
0 Scope changes to objects under construction

persistence bootstrap

\4

/Classes

—Work safely on new features

+ ! DevLayer

depend A | depend
| change
|
|

| .
Tools Objects
L% | :
[}

! 1
feedback == - - —— - -T2PZ I

Environment

13

Summary

1. Lively Webwerkstatt:
A Development Environment in the Cloud

2. Lively Parts: Program Objects Directly

3. ContextJS: Evolving Self-supporting Development
Environments at Runtime

14

2. Sino-German Workshop on

Cloud-based High Performance Computing ﬂ

Programming in the Cloud
Context-oriented Programming for Self-supporting
Development Environments
Jens Lincke and Robert Hirschfeld

Software Architecture Group
Hasso-Plattner-Institut Potsdam
www.hpi.uni-potsdam.de/swa

2012-10-24
15

