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1. Lively Webwerkstatt:
A Development Environment in the Cloud

2. Lively Parts: Program Objects Directly

3. ContextJS: Evolving Self-supporting Development
Environments at Run-time



Lively Kernel ﬂ

m Web-based development and runtime environment

m Lively Kernel's Promise:

"Where ever there is Web, there is authoring"

http://lively-kernel.org/



Lively Wiki

m Metaphor
- "A Wiki of active objects that can be
programmed by wires and tiles" [Krahn 2008]
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http://lively-kernel.org/repository/webwerkstatt/demos/LivelyWikiPresentation.xhtml




Lively Webwerkstatt

m Lively Kernel based Wiki
m Web-based Development Environment

m Core idea:
o Allow authors to not only change content,
but to shape their tools as they are using them

m Share their ideas and tools directly
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http://lively-kernel.org/webwerkstatt
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Parts and PartsBin ﬂ

m Shared Repository of Lively Parts

m Direct object manipulation

m Deep copying of objects



(Meta-circular) Tools in PartsBin ﬂ

m Bootstrapped to higher level development cycle

m Examples
o Object Editor
o PartsBin Browser
0 Inspector
0 Method Finder

m Tools are created as Parts and modified like every other
item in the PartsBin



Self-supporting Development Environments ﬂ

Examples: Smalltalk, Self, Emacs, Squeak

Evolve the environment while it in use
Direct and interactive development
But: Changes can break the system
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Separate Runtime Environments

m Development tools run in a separate environment
o Work on static code
0 Bootstrapped by external code

m Interprocess communication
vs. direct access to objects
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Using Scoped Behavioral Adaptations for
Evolving Self-supporting Development Environments

m Use Context-oriented Programming (COP) layers to adapt core classes
and methods at run-time

m Changes affect only behavior of
objects under construction persistence
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Example 1 — Visualizing Events

cop.create('ShowMouseMovelLayer').refineClass(Morph, {
onMouseMove: function(evt) {
show(evt.mousePoint)
return cop.proceed(evt)
s
iD)

ShowMouseMovelLayer.beGlobal();
ShowMouseMovelLayer .beNotGlobal();
this.get('DebugArea’).setWithLayers([ShowMouseMovelLayer])
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Example 2 — Text Coloring

Hello World

cop.create('DevLayer').refineClass(lively.morphic.Text, {
processCommandKeys: function(evt) {
var key = evt.getKeyChar();
if (key) key = key.tolLowerCase();

if (evt.isShiftDown()) { // shifted commands here...

switch (key) {

case "5": { this.emphasizeSelection({color:
case "6": { this.emphasizeSelection({color:
case "7": { this.emphasizeSelection({color:
case "8": { this.emphasizeSelection({color:

}
}

return cop.proceed(evt);

D)

Color.black}); return true; }
Color.red}); return true; }

Color.green}); return true; }
Color.blue}); return true; }
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Example 3 — Developing Autocompletion

this.onMouseDown

cop.create('AutoCompletionLayer').refineClass(lively.morphic.Text, {
onKeyPress: function(evt) {
var key = evt.getKeyChar();
if (key.match(/\w/)) {
this.hideWordCompletionMorph();
return;
¥
var range
var cursor

this.getSelectionRange()
range[Q];

if (cursor > 0) {
var lastWord;

1f (lastWord = this.getLastWord()) {
lastWord += key // weird errors when we proceed before our code

1
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Development Layers

m Evolving tools in self-supporting development environments
is direct and interactive

m Changing core parts can accidentally break the system

m We applied Context-oriented Programming to @
self-supporting development environments
o0 Encapsulate changes into layers
0 Scope changes to objects under construction
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Summary

1. Lively Webwerkstatt:
A Development Environment in the Cloud

2. Lively Parts: Program Objects Directly

3. ContextJS: Evolving Self-supporting Development
Environments at Runtime
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