Three Trillion Lines:
Infrastructure for Mining GitHub in the Classroom

Toni Mattis
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
toni.mattis@hpi.uni-potsdam.de

ABSTRACT

The increasing interest in collaborative software development on
platforms like GitHub has led to the availability of large amounts
of data about development activities. The GHTorrent project has
recorded a significant proportion of GitHub’s public event stream
and hosts the currently largest public dataset of meta-data about
open-source development. We describe our infrastructure that makes
this data locally available to researchers and students, examples for
research activities carried out on this infrastructure, and what we
learned from building the system. We identify a need for domain-
specific tools, especially databases, that can deal with large-scale
code repositories and associated meta-data and outline open chal-
lenges to use them more effectively for research and machine learn-
ing settings.

CCS CONCEPTS

+ Computing methodologies — Machine learning; « Software
and its engineering — Abstraction, modeling and modularity.

KEYWORDS

Repository Mining, GitHub, TravisCI, Big Code, Teaching

ACM Reference Format:

Toni Mattis, Patrick Rein, and Robert Hirschfeld. 2020. Three Trillion Lines:
Infrastructure for Mining GitHub in the Classroom. In Companion Proceed-
ings of the 4th International Conference on the Art, Science, and Engineering of
Programming (<Programming’20> Companion), March 23-26, 2020, Porto, Por-
tugal. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3397537.
3397551

1 INTRODUCTION

The availability of large-scale datasets about open-source devel-
opment activity, such as GHTorrent[3] and TravisTorrent[2], paves
the way to study and train machine learning (ML) models on real
data with the least sampling bias possible. Furthermore, it allows
students to develop skills in large-scale data management and anal-
ysis while working on topics related to programming languages,
software architecture, and development processes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7507-8/20/03....$15.00
https://doi.org/10.1145/3397537.3397551

Patrick Rein
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
patrick.rein@hpi.uni-potsdam.de

Robert Hirschfeld

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
hirschfeld@hpi.uni-potsdam.de

In collaboration with the students working on these datasets,
we evolved a platform that allowed students and researchers to
answer a wide range of research questions. Since this infrastructure
is continually improved, we provide a short overview of the cur-
rent state and limitations that might lead to future improvements.
The questions we are addressing in this experience report are the
following:

(1) What data are we using?

(2) Which server infrastructure can support around 10 concur-
rently working users?

(3) How can we automate large-scale data import?

(4) Which defects and failure modes need to be dealt with during
import and operations?

(5) Which tools worked well for researchers using this data, and
which types of research questions are being answered with
them?

We conclude with a set of insights and research topics that were
enabled through our infrastructure. We emphasize that, although
the infrastructure is used for statistical analyses and training of a
range of ML models, this instance is not yet equipped for GPU-based
deep learning (DL).

2 DATASET
The dataset we focus on is a combination of several sources:

(1) A relational schema of meta-data provided by GHTorrent[3]

(2) Commit messages and file changes from GHTorrent’s raw
datal.

(3) Actual repositories with complete directories and files cloned
from GitHub

(4) TravisTorrent[2] built meta-data

GHTorrent Relational Schema. The relational schema contains
linked meta-data about users, projects (repositories), commits, and
other GitHub-specific activities like issues, pull requests, and com-
ments associated with each artifact. Some content, such as com-
ments, are present, while commit messages or file patches are not.

Individual File Changes. The GHTorrent project provides the col-
lected raw data from the GitHub API in a document database (Mon-
goDB). Due to resource constraints, we re-processed their database
dumps to extract which file paths were changed in which commit,
and collected the patch that encodes the full change to that file.
This resulted in a new table with about 1.22 x 101 entries that can
be joined with the existing meta-data schema.

http://ghtorrent-downloads.ewi.tudelft.nl/ (last accessed 2019-12-31)


https://doi.org/10.1145/3397537.3397551
https://doi.org/10.1145/3397537.3397551
https://doi.org/10.1145/3397537.3397551
http://ghtorrent-downloads.ewi.tudelft.nl/

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

Repositories. To complement the incremental view on the devel-
opment process with actual file content, we use an infrastructure
that downloads full repositories from GitHub, optionally checks out
working copies for file-based tools, and indexes the file locations in
database tables to allow SQL queries directly return file paths of
interest. Content itself has to be retrieved by either reading a file
in the working copy or accessing the repository using a Git library,
e.g. libgit2.

A small subset of repositories has an associated tree of XML files
that represent the SrcML? representation of the code. This allows
XML-based tools to query and process their abstract syntax trees
using XPath and XSL transforms.

TravisTorrent. The TravisTorrent dataset contains build reports
from the continuous integration service TravisCI°. A single table
containing all builds (incl. which commits where built and whether
the build was successful) is part of our relational database.

Moreover, a subset of about 73000 builds of 20 active Java projects
has been reprocessed down to test case level, i.e., for each built we
know test failures, successes, and durations, and which commits
have caused them. [8]

3 INFRASTRUCTURE
3.1 Hardware and Software Setup

Requirements. We designed our setup in a way that allows us
to quickly add new capacity as the dataset grows, as we could
only vaguely estimate required space upfront. The setup was to
be operated on-premise and with free, open source software only
as we intended to avoid vendor lock-in or high operating costs
associated with cloud providers. We also intended to access the
database at full network speed from the university network. We
expect to serve up to 10 user sessions and require live fail-over
capabilities and redundant disks.

Virtualized Infrastructure. Our lab runs multiple dual-socket
servers and a disk array (12x 4TB SAS disks in RAID6 configu-
ration). This physical infrastructure is shared with other research
and teaching services, our dataset occupies a single VM. We use
XCP-ng as hypervisor and all servers joined a single resource pool.
VM storage consists of virtual disk files stored on the disk array.
This so called multipath configuration allows live migration be-
tween physical servers as hardware downtimes due to failures or
upgrades are unavoidable.

We use one VM with 64 CPU cores, 320 GB main memory, and
24 TB of virtual disks. It supports live-migration between physical
servers.

Bandwidth between server and disk array can reach 1 GB/s, but
averages at 400 MB/s. Although fast for disk-based storage, this is
the limiting factor for querying the GHTorrent dataset.

The run-time of an SQL query can be estimated by adding sizes
of scanned tables and divide by 400 MB/s. For our largest table,
this is 8.5 hours.

Zhttps://www.stcmlorg/ (last accessed 2020-05-15)
3https://travis-ci.org/ (last accessed 2020-01-11)

Toni Mattis, Patrick Rein, and Robert Hirschfeld

VM Provisioning: CPUs and Memory. Most analysis jobs are not
parallelized and the majority of analysis tasks isI/O-constrained, i.e.,
reads from disk, network, or runs database queries. We concluded
that during initial student contact four CPU cores would suffice and
later extended the VM to 16, then 64 CPU cores as we configured
PostgreSQL to use additional workers per query. To allow students
to keep long-running processes (incl. Jupyter notebooks) active
over the course of a semester, we initially provisioned 128GB of
main memory, later extending the limit to 320GB.

Our VM provisioning worked as expected. CPU power was al-
most never fully utilized, but disk I/O frequently reached bandwidth
limits even with a single user session. Memory was usually not
used more than 50 % by user sessions, but the database service
indirectly benefited from spare memory as Linux keeps disk data
in its page cache. When more than 100GB remain unused over a
long period, querying the first few million rows of each database
table becomes orders of magnitude faster. This behavior benefits
explorative queries, e.g. where students sample a small subset of
the data to test a query that eventually runs overnight.

Repository analysis is I/O-intensive. Generously over-
provisioning main memory helps Linux cache disk data,
but additional CPUs are rarely used.

Storage Provisioning. Storage requirements tend to grow over
time, as GitHub data rapidly grows, and so does the GHTorrent
dataset. Intermediate results should be stored in the database to
allow re-use over expensive re-computation, e.g. as materialized
views. Virtual disks can only grow to 2 TB, so we have 12 virtual
disks allocated to our VM. They have to be added to a volume group
using the Linux Logical Volume Manager (LVM). A single logical
volume stretches over the full volume group and hosts an ext4 file
system.

A benefit of this setup is the ability to add a new virtual disk
when needed, while LVM can allocate the new space to the mounted
volume on-line. A major drawback was our choice of ext4 over
high-capacity file systems like ZFS, as we once approached the limit
of inodes[9], i.e., the maximum number of file and directory entries.*
We mitigated this problem by limiting the number of checked-out
Git working copies, of which we temporarily hosted over 600 000.

Virtual disks in connection with logical volumes (LVM) allow
VM disk space to grow over time. However, ext4 limits the total
number of files.

4 DATA PROCUREMENT AT SCALE

The GHTorrent project caches all GitHub API responses they ever re-
trieved, including every commit, using MongoDB as document stor-
age. They export this data using MongoDB’s native BSON (Binary
JSON) format and provide compressed .tar.gz archives as down-
loads®. These dumps are incremental, the first four being created
in larger intervals (the largest was 5.1 TB in a single commits.bson
file), followed by 1252 daily increments®.

4 About one billion in our file system
Sghtorrent-downloads.ewi.tudelft.nl (last accessed 2019-12-04)
$Until 2019-06-30


https://www.srcml.org/
https://travis-ci.org/
ghtorrent-downloads.ewi.tudelft.nl

Three Trillion Lines: Infrastructure for Mining GitHub in the Classroom

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

Table 1: Number of rows per relation. Bold are primary entities. Starred (*) relations have been extracted from the MongoDB
dumps and can constitute a superset of the original relations, (**) were computed from existing tables and do not constitute
relations. Arrows (—) indicate that these relations link their entity to other entities.

Entity / Relation Count Entity / Relation Count
Users 32411734 Issues — projects, Users 98076172
Followers — users 29809738 Iss. Comments — users 148 429082
Org. Members — users 681054 Iss. Labels 27474913
Projects — users 125486 232 Iss. Events 136 108 876
Proj. Commits — commits 6251898944 Pull Requests — pojects, Users 52018 443
Watchers - users 150035336 PR. Comments — users 35453290
Proj. Members — users 12618714 PR. Commits — commits 266030 349
Proj. Languages 138 205 530 PR. Events 135081995
Proj. Topics 517318
Commits — vsers 1368235072 TravisCI Builds 3702595
Commit Messages” 1406 641 206
Parents — commits 1365342872
Parents* 1437712365
Commit Comments 5682741
Patches” 12212981 402 Lines Added/Deleted** 3158855923 812
Database size on disk 14.72 TiB
query hash | -bson file stream
| Base (4| 1.6 TB) | Incremental (1252 | @ 4.7 GB | 5.7 TB) I (keyA ] - (I | (Gize J(CkeyA J((valueA J(CkeyB J(valueB ] ...
\‘ oo | R; ______________________ R lkexF Rl | : D éhash éhash
| Base (4]9.2TB) .bon Incremental (1243 | @ 22 GB | 27 TB) | br:ken ! ¢ 4 B 3 | . } . ¢
== mask (D | (HED : (EE £
~ N N G . [ -
| 346190898 | 1059 410152 © (@ 852k ) | A T ‘
\/_/ """"""""""""""""" A

1406 641 206 commits 107
DB (1040 156 duplicates) malformed
rows

12 212 981 402 file changes I

Figure 1: Visualization of the import pipeline with quanti-
ties and time scales. Timing is approximated and depends
on network bandwidth.

Our relational database of choice is PostgreSQL (Version 12.0 at
the time of writing, 9.4 initially). We ruled out the option to directly
import the data into MongoDB for two reasons:

e The majority of values are full URLs pointing to linked re-
sources. We were primarily interested in data that is usable
offline (such as author, message, and file changes of a com-
mit).

o The reliability of mongorestore proved insufficient in multi-
ple experiments to reproducibly import dumps from a foreign
source.

Filtering desired information from files that large cannot be
achieved using traditional BSON libraries, as they parse the full doc-
ument when only a small subset of keys is needed. This prompted
us to develop our own solution to query and import large BSON
files efficiently.

query ( % , ,callback(ﬂ E ) } Python

Figure 2: Working principle of the streaming BSON library
using bloom filters and Python callbacks.

BSON Query Engine. Our BSON query engine is a Python exten-
sion written in C. It consumes a (nested) list of keys to extract, a
file descriptor, and a Python callback function with arguments that
match the keys to be retrieved. The engine scans the consecutive
documents in the BSON file stream and only parses values that
correspond to a key in the query. Key lookup is accelerated by
bloom filters. Querying is recursive, e.g., for a sub-document we
can issue a sub-query for the value’s elements of interest. Parsed
values are handed back to the Python interpreter by passing them
as arguments to the callback function.

In our main use case, a Python script sanitizes the individual
values and insert them into a database, but we have used the library
extensively to explore the large MongoDB dumps and gain insights
into what keys and values to expect.

Batched Import. To better recover from crashes, parallelize im-
ports, and allow users to interact with the database while import
scripts are running, we import batches of 1024 documents per
transaction. A failure in a batch causes a roll back and writes the
offending document offsets to disk, so we can manually re-import
this batch after resolving the issue.



<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

Parallel Pipelines and Bus Bunching. To better utilize resources,
we operate the import process as a pipeline processing one down-
loaded archive at a time and deleting successfully imported archives.
In our current setup, four instances of the pipeline operate in paral-
lel.

However, parallelizing the import suffers from an instance of the
bus bunching problem’ , where multiple processes cycling through
limited resources (e.g. network during download, disk during ex-
traction) slow each other down when using the same resource. This
causes more processes to “catch up” and get trapped in the same
phase as the other processes, slowing them down even more. The
first process to exit a resource-constrained phase (e.g. completing
download and beginning to extract) will cause the other processes
to exit faster, so they catch up again and clump in the next phase
(e.g. exhausting disk I/O while extracting). This effect of processes
syncing up at the same resource increases with more processes and
can only be addressed by a different architecture in the future.

Bus Bunching: If a long-running task cycles through constrained
resources (disk, network, CPU), starting many instances of this
task causes them to eventually bottleneck themselves at the same
resource, leaving the remaining resources idle.

4.1 Failure Model

Our failure modes are dominated by encountering invalid data or
system limitations (see Table 2). In the irrecoverable case, knowing
which or how much data is missing helps assessing the validity
of results based on that data. Automating the import to a degree
that requires minimal intervention - including recovering from
crashes — makes it easier to update the dataset or fully rebuild it.
We describe problems in detail to help avoid them in similar setups:

Data Level. The original data contains dubious UTF-8 encoding
(e.g. UTF-16 surrogates, humorously known as WTF-8 encoding, or
multi-byte null characters), is incomplete (e.g. API responses that
classified a file as renamed without stating the previous filename),
or contains otherwise unexpected data (e.g. timestamps from the far
future). We can only speculate about their cause, but must consider
the possibility that commits or repositories have been created or
manipulated using old ® or alternative Git implementations with
relaxed or even malicious treatment of timestamps and filenames.
During import, we sanitize UTF-8, while timestamps are loaded as
text to let analysis code decide how to parse them and which ranges
be acceptable. The timestamp 0000-00-00 00:00:00 is invalid and
regarded as null.

When dealing with CSV, numeric columns can contain booleans
(e.g. TRUE), or be escaped (e.g. "42"). Missing values can occur as
the empty CSV cell, \n, N2 (specifically in TravisTorrent), or the
empty string "" in non-string columns. We replaced the common
cases (such as the different variants of null) using the Linux tool
sed before further considering the CSV file.

"Named after the effect that late buses picks up more waiting passengers, making
them even later and causing spaced vehicles to catch up
8Git before 1.7 did not handle non-ASCII filenames uniformly across platforms.

Toni Mattis, Patrick Rein, and Robert Hirschfeld

GitHub
clone un-cached repos

@
Analysis Code ]

i request repos
select -
repos

i index cloned objects i store clone and working copy

Location Tables File System

GitHub Schema

TravisCl Schema

[
repo_clones J .git Repositories
[

B ~ git checkout
ed for + project.id (latest commit
et : path [ [ in DB schema)
Sd“t’f’”/ « language_id
reporting
______________ ' SreML
project_metrics working_copies i*_‘ (optional)

j i « file_id
* project_id o
* metric_id « commit_id
« metric_value « file_name
- + path faw
updated after clone

Figure 3: Repository management infrastructure linking file
system and GitHub database

Expect source data (unicode, dates, numbers, booleans, and null)
to be laxly encoded. Expect target languages and databases to be
strict about types and their encoding.

Distribution Level. Hosted .tar.gz archives containing the ex-
ported .bson document collections can be corrupted or truncated,
causing either the tar tool to fail or our importer to encounter in-
valid documents in the BSON stream. We lost 9 of the 1252 incremen-
tal archives to data corruption (i.e., 1 in 139), and the successfully
extracted commits.bson files contained 107 defective documents
(ie., 1in 13 million)g. Using the other archives, we estimate that
about 7 to 8 million documents are currently missing from our
dataset, which amounts to 0.5 % of all commits.

Network, OS, and Disk level. Faults during the download were
transient and fully recoverable using fast timeout, unbounded re-
tries, and the continue flags in wget '°. Unexpected failures have
occurred and prompted us to keep data import resumable and its
progress recoverable through fine-grained logging. If started from
a previously interrupted state, our import scripts can resume from
the most recently logged record. Serious issues, such as a failing
host bus adapter connecting the disk array, can still lead to incon-
sistencies between what the import tool recorded and what the
database was able to recover, causing our script to accidentally
re-insert about one million commits. A deduplication of the dataset
is no longer possible, as the required sorting or hashing stage needs
more space than physically available.

Transactions, progress logging, and the ability to restart from any
logged progress leads to a resumable design that saves time after
failures.




Three Trillion Lines: Infrastructure for Mining GitHub in the Classroom

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

Table 2: Critical defects and failure modes encountered during infrastructure setup.

Item Offending cause Observed effect

Prevalence Current mitigation

Strings ~ UTF-16 surrogates in UTF-8 rejected by DB
Multi-byte null

Wrong type in CSV column rejected by DB

Dates zero date (0000-00-00 00:00:00) rejected by DB

in far future or past

analysis

BSON invalid document parsing error

Archive truncation/corruption

pected EOF

VM disk space exhaustion

stops

inode exhaustion

Host server failure operation stops
Disks disk failure availability loss, data loss -
RAID or HBA failure kernel panic, data loss

run-time error in Python -

unexpected behavior during = 1in 1B records

tar terminates with unex- 9 of 1252 archives
download/extract/import

file creation no longer possible -

~ 11in 500k strings  substitute by replacement

character u+rrFD

replace by single-byte u+0000

- replace common cases with
sed, regard rest as null

1in 100M records replace by null

retain as text, ignore during

analysis

skip individual document

skip archive

Q

~ 1 in 13M records

attach new virtual disk file, ex-
pand volume group

limit checked-out Git working
copies

- reboot VM on other host
RAID 6 configuration

- Write-ahead logging (WAL)

~ annually

5 TOOLS AND EXPERIENCE

Working on the Server. We use Jupyter Lab'! as a tool to program
and run Python on the server. Each user account is set up with
a configuration that runs a password-protected Jupyter Lab on a
personalized port via HTTPS. The UI allows them to navigate and
edit all files (including notebooks) in their home directory, while
all users can programatically access shared locations, such as the
directory of repositories, and connect to the database. Using long-
running notebooks is popular, as complex queries can be left running
overnight and re-visited from another computer.

The capability to continue exploration over multiple days from
any location has its benefits, but often results in code that is ex-
tremely difficult to re-run, e.g. after a crash or in a reproduction at-
tempt. Moreover, we observe that almost no tests are being written
for software artifacts (“notebook-driven development”) and collab-
oration is difficult. Groups tend to diverge quickly, each performing
exploration in their own notebook, since sharing of notebooks or
results is hard.

Server-side Jupyter notebooks greatly benefit data-heavy explo-
ration tasks. However, the resulting collaboration and code quality
needs improvement ideas.

Managing Repositories and Working Copies. To manage repos-
itories alongside the relational database, students built a Python
library for cloning the repository from its original location while
storing its disk location in the database (see Figure 3). A commit
can be checked out into a directory, and the files in this working
copy will be indexed in the database as well. The library computes

“We did not inspect other . bson files in the incremental archives
quet —-c —--retry-connrefused --timeout=5 --tries=0
https://jupyterlab.readthedocs.io (retrieved 2019-01-14)

a number of metrics (e.g. lines of code) to allow future users to
quickly retrieve or rank repositories by that metric.

This abstraction layer accumulated more than 600000 reposito-
ries, which led to performance degradation of the ext4 filesystem;
directory-based tools like 1s or du became unusable and inode lim-
its were nearing exhaustion. Currently, we encourage the use of
GitPython to access bare repositories without checking out working
copies.

Parsing Code. Up to now, most users resort to parsing code in
the respective host language (e.g. using Python’s ast module), or
use SrcML, which can generate an XML view on the source files.
Python’s 1xnl is a popular choice to query the results with XPath or
transform them via XSLT. Examples include generating a GraphML
representation of a call graph to be visualized in Gephi[1] or comput-
ing code metrics using XPath queries (number of classes, methods,
dependencies, arguments, etc.)

XML-based tools like SrcML, XPath and XSLT are verbose, but
flexible and fast tools for code analysis.

However, SrcML could not keep up with language evolution. In
the future, we plan to evaluate Tree-Sitter'? and Babelfish!?, both
are frameworks for parsing a wide range of languages.

We perceive a lack of persistent structures, e.g. a binary alterna-
tive to SrcML, which helps to semantically query a program and all
its versions at a larger scale and allows intermediate results to be
stored at node-level for future re-use.

Learning Models. Tools used for analysis and machine learning
are extremely specific to the use case at hand. In general, the ecosys-
tem provided by Python’s NumPy and SciPy is sufficient for most

2https://tree-sitter.github.io (Retrieved 2019-01-14)
Bhttps://docs.sourced.tech/babelfish (Retrieved 2019-01-14)


https://jupyterlab.readthedocs.io
https://tree-sitter.github.io
https://docs.sourced.tech/babelfish

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

descriptive tasks, while scikit-learn is a popular choice for predictive
models. Although supported, the TensorFlow ecosystem remained
an unpopular choice, as its data and programming model does not
align well with the tree-like and graph-like models occurring in
repository analyses.

5.1 Research Questions

We provide a small selection of research questions and how they
are currently approached using our platform.

Cross-language Effects. In our seminar, we address the question
how experience in one programming language affects the quality of
code written in a different language. As an example, Horschig et al.
[4] measured correlation between code quality issues in Python and
the original language of the programmers causing them (e.g. C++
programmers leaving semicolons at the end of lines in Python). We
continue to study how picking up a new language affects coding
style in one’s original language. The platform supports these types
of research, as students can select candidate contributors by a wide
range of metrics and isolate their contributions in actual source
code.

Maintainability. We try deriving insights from development his-
tory about the maintainability of the underlying system. For ex-
ample, participants of our seminar explore how modularity can be
measured based on co-edited locations, co-authorship, test results,
pull requests, or issue discussions. We extensively used the database
to gather candidate projects and evaluation datasets for regression
test prioritization [7, 8].

Tooling. We explore tool designs at two levels:

(1) Tools to help users analyze the dataset itself, such as live
programming environments for the dataset,

(2) Tools that use the dataset to help their users program better,
such as recommenders and linters. We are primarily using
Lively4 [6] and Squeak/Smalltalk [5] to build tools in an
exploratory fashion.

Technical Problems. Apart from data-driven research questions,
we are interested in exploring high-performance data structures and
algorithms that support above research questions. These range from
databases specialized to support syntax trees and version histories,
over data structures for ASTs, to fast code metrics that scale well.
We see our dataset as an opportunity to evaluate such designs,
and at the same time would be their initial users. Git repositories
are built for collaboration, not for analysis — relational databases
are built for analyses, but not for code. Hence, we lack technical
solutions in their overlap.

Toni Mattis, Patrick Rein, and Robert Hirschfeld

6 CONCLUSION AND FUTURE WORK

With our enriched GHTorrent dataset, theoretical limits of file sys-
tems, databases, or libraries unexpectedly turn into practical barri-
ers. Moreover, “one-in-a-billion” faults turn into frequent events if
not dealt with by robust and resumable design.

Instead of scaling out, we developed custom tools and ways of
working that allowed us to process “Big Code” on a single VM.
This setup was not an upfront design decision but emerged as we

observed how students dealt with these challenges.
Working with the setup, we experienced a mismatch between

how databases and “Big Data” operate and how source code is
organized and accessed through tools. While the former does not
match the structure of software repositories, the latter does not
scale to the same degree. A database for code could be of help here.
Finally, with the availability of deep learning hardware, we look
forward to address a completely new set of infrastructural and
technical challenges in the foreseeable future.

ACKNOWLEDGMENTS

This research has been supported by the Federal Ministry of Ed-
ucation and Research of Germany (BMBF) in the KI-LAB-ITSE
framework (project number 011S19066).

REFERENCES

[1] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: An Open
Source Software for Exploring and Manipulating Networks. http://www.aaai.org/
ocs/index.php/ICWSM/09/paper/view/154

[2] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-
sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In Proceedings of the 14th working conference on mining software repositories.

[3] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories (San Francisco, CA,
USA) (MSR ’13). IEEE Press, Piscataway, NJ, USA, 233-236. http://dl.acm.org/
citation.cfm?id=2487085.2487132

[4] Siegfried Horschig, Toni Mattis, and Robert Hirschfeld. 2018. Do Java Program-
mers Write Better Python? Studying off-Language Code Quality on GitHub. In
Conference Companion of the 2nd International Conference on Art, Science, and En-
gineering of Programming - Programming’18 Companion. ACM Press, Nice, France,
127-134. https://doi.org/10.1145/3191697.3214341

[5] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997. Back
to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself. In
Proceedings of the 12th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA *97). ACM, New York, NY, USA,
318-326. https://doi.org/10.1145/263698.263754

[6] Jens Lincke, Patrick Rein, Stefan Ramson, Robert Hirschfeld, Marcel Taeumel,
and Tim Felgentreff. 2017. Designing a live development experience for web-
components. In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Programming Experience, PX/17.2, Vancouver, BC, Canada, October 23-27, 2017.
28-35. https://dl.acm.org/citation.cfm?id=3167109

[7] Toni Mattis and Robert Hirschfeld. 2020. Lightweight Lexical Test Prioritization
for Immediate Feedback. Programming Journal 4, 3 (2020), 12. https://doi.org/10.
22152/programming-journal.org/2020/4/12

[8] Toni Mattis, Patrick Rein, Falco Diirsch, and Robert Hirschfeld. 2020. RTPTorrent:
An Open-source Dataset for Evaluating Regression Test Prioritization. In Pro-
ceedings of the Conference on Mining Software Repositories (MSR) 2020. To Appear.
https://doi.org/10.1145/3379597.3387458

[9] Andrew S. Tanenbaum. 2007. Modern Operating Systems (3rd ed.). Prentice Hall
Press, USA.


http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://doi.org/10.1145/3191697.3214341
https://doi.org/10.1145/263698.263754
https://dl.acm.org/citation.cfm?id=3167109
https://doi.org/10.22152/programming-journal.org/2020/4/12
https://doi.org/10.22152/programming-journal.org/2020/4/12
https://doi.org/10.1145/3379597.3387458

	Abstract
	1 Introduction
	2 Dataset
	3 Infrastructure
	3.1 Hardware and Software Setup

	4 Data Procurement at Scale
	4.1 Failure Model

	5 Tools and Experience
	5.1 Research Questions

	6 Conclusion and Future Work
	Acknowledgments
	References

