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1 MOTIVATION

Live programing environments, such as Smalltalk, are valued for
allowing program changes at run-time while the full execution state
is accessible for inspection [12]. The resulting immediacy of feed-
back motivates continuous and fine-grained change, exploration,
and checking of hypotheses the programmer might have generated
by recognizing familiar names and structures.

However, liveness alone does not guarantee a high-level under-
standing of the system at hand. Programmers might be oblivious
to the original mental model from which terminology and architec-
ture were drawn [3, 8]. This promotes inconsistent naming, missing
relevant dependencies during a change, duplicating functionality,
or failure to find a variation point to add a new requirement.

A recent approach to allocate concepts to program parts are
latent topic models, which identify concept-specific terminology
chosen by programmers.

In the context of this work, we extend topic modeling to handle
some of the information needs in a live programming environment.
We hypothesize that machine learning and live programming can
jointly contribute to program comprehension at the level of static
code, run-time behavior, and state.

2 BACKGROUND AND RELATED WORK

Topic Models. A family of techniques to recover concepts from
documents are probabilistic topic models, such as Latent Dirichlet
Allocation (LDA) [5] or Hierarchical Dirichlet Processes (hDP) [13].
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Figure 1: Simplified concept model simultaneously explai-
ning code, state, and behavior (left) by grouping concept-
specific terminology (right).

Topic models group words from a set of documents into a small
number of fopics based on frequent co-occurrence, and assign each
document the proportions of how concerned it is with each topic,
yielding a lossy compression of each document’s word histogram.

Topics in Source Code. Recent work indicates that LDA recovers
coarse-grained concepts from code reasonably well [2, 4, 7, 11].
Related models like hDP [13] for hierarchies of topics, or Stochastic
Block Models [1] for graph-structured data remain understudied
in this context. Nevertheless, they are of interest to our research
due to their explanatory power. Graph- and trace-based code simi-
larity measures suited for clustering are used in the field of aspect
mining [9, 14]. Other approaches incorporate natural language to
capture the meaning of code in terms of the vocabulary used by
programmers to document its functionality [10, 15].

3 APPROACH

We consider a concept as a part of the real-world or technical domain
of a program that can be distinguished from other concepts by a
unique terminology (e.g. “line” and “point” as parts of the “geometry”
concept, see Figure 1). Concepts are composed of other concepts
by means of abstraction.

We require a concept model capable of answering the following
questions about any given meta-object (e.g. method, class, stack
frame) or object (e.g. instance) at run-time:

(1) Given a (meta-)object,
(a) which concepts does it represent and in which role
does it appear in the respective concept?
(b) which concepts does it use for its implementation?
(2) Given a concept,
(a) which (meta-)objects realize it?
(b) which other concepts use it in their implementation?
(c) which other concepts are used for its implementation?

We inferred these information needs from an initial case study in-
volving the review of students projects, and the observation which
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Figure 2: Example function definition under our concept mo-
del (upper part) and LDA (lower part).

questions are frequently asked when the live programming environ-
ment used throughout this course is explored during the semester.

Concept Model. We investigate a novel variation of LDA that
incorporates a topic X topic matrix analogously to a stochastic block
model learning which abstractions make use of which implemen-
tations (Figure 2). This model is capable of explaining the abstract
vocabulary used in a public interface as topic mixture and regards
identifiers chosen in the implementation as a different topic mixture
derived from the abstract topics translated through the block model.
It also serves as an edge predictor in the call graph and in the object
graph, thereby offering the possibility to be further trained from
run-time data in addition to static code. We implemented inference
via Gibbs sampling similar to LDA [6].

Usage Inside the Environment. Besides visualizing and navigating
the extracted model to get an initial system overview, concepts
can be represented by color coding in the debugger’s call stack
or object inspector. Syntax completion can scope its proposals to
concepts currently surrounding the completion site and offer the
possibility to switch between lower and higher abstraction levels.
The code browser and editor can recommend live objects rather than
just related code artifacts. Code not aligned with the surrounding
concepts yields refactoring hints.

4 OUTLOOK AND CONCLUSION

Our research is in an early stage and focused on the theoretical
combination of lexical features with the graph structure of code,
state, and behavior. The model presented here will likely change in
the future. So far, we integrated data specific to an object-oriented
live programming environment into a single probabilistic model
and are currently working on effective integration into the standard
tools of a Smalltalk environment. We plan an evaluation based on
standard language modeling metrics, such as perplexity, as well as
an assessment of its contribution to program comprehension in a
Smalltalk environment after tool integration has progressed to a
sufficient degree.
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