
Test Quality Feedback
Improving Effectivity and Efficiency of Unit Testing

Michael Perscheid, Damien Cassou, and Robert Hirschfeld

Hasso–Plattner–Institute, University of Potsdam

Software Architecture Group

Potsdam, Germany

Email: firstname.lastname@hpi.uni-potsdam.de

Abstract—Writing unit tests for a software system enhances
the confidence that a system works as expected. Since time
pressure often prevents a complete testing of all application
details developers need to know which new tests the system
requires. Developers also need to know which existing tests take
the most time and slow down the whole development process.
Missing feedback about less tested functionality and reasons for
long running test cases make it, however, harder to create a
test suite that covers all important parts of a software system
in a minimum of time. As a result a software system may be
inadequately tested and developers may test less frequently.

Our approach provides test quality feedback to guide developers
in identifying missing tests and correcting low-quality tests. We
provide developers with a tool that analyzes test suites with
respect to their effectivity (e.g., missing tests) and efficiency (e.g.,
time and memory consumption). We implement our approach,
named PathMap, as an extended test runner within the Squeak
Smalltalk IDE and demonstrate its benefits by improving the test
quality of representative software systems.

Keywords-Unit Tests, Dynamic Analysis, Test Quality Feedback

I. INTRODUCTION

Software testing is an essential development activity to

ensure that applications work as expected. Automated unit

tests allow developers to specify the proper state and interac-

tion of objects and provide early identification of erroneous

behavior [1]. For these tests to be effective in identifying

erroneous behavior it is necessary that test cases cover as much

as possible of the system code [2]. Another requirement is that

developers must execute these tests as frequently as possible

and thus they should be fast [3].

Nevertheless, a complete coverage of a system is unfeasible

and finding reasons for suspiciously long running tests in a

large test suite is hard. Commonly, well tested applications

own only a coverage rate around 70-80% [4] and increasing

this coverage requires much more development effort [5]. Also

optimizing test cases for run-time performance takes time and

is often ignored or overlooked by developers to the benefit

of other development tasks. To avoid loosing time on these

issues feedback about coverage and performance is critical

for developers.

This work has been supported by the HPI-Stanford Design Thinking
Research Program.

Existing coverage and execution profiler tools provide feed-

back about the quality of test cases but they come with their

own limitations. Code coverage tools analyze at the method,

statement, or branch level which test cases execute which

system parts. This fine granular view of covered code is im-

portant for creating new tests. Nevertheless, this view requires

developers to manually correlate it with other information

such as complexity or author ownership. For instance, few

tools distinguish between complex code (requiring more tests)

and trivial code, and even fewer identify potential experts

most capable of writing new tests for less tested system

parts. Moreover, collecting run-time information at statement

or branch level comes along with a perceivable performance

decrease [6]. Also, by focusing on a specific test case, execu-

tion profilers barely allow a comparison of multiple test cases

for the purposes of identifying common run-time bottlenecks

and memory leaks.

In this paper, we present test quality feedback that supports

developers in the identification and correction of inadequately

tested system parts. Our approach combines multiple high-

level views of system, coverage, and profiling information

through effectivity and efficiency feedback. Effectivity feedback
reveals locations that are worthwhile increasing the testing

effort, focusing the developers on important system parts. Effi-
ciency feedback reports on run-time performance and memory

consumption to speed up the execution of entire test suites

with limited effort. To ensure automated, scalable, and fast

responses to developers we base our approach on a lightweight

and incremental coverage framework.

The contributions of this work are as follows:

• A test quality feedback technique that guides developers

in identifying missing test cases and correcting low-

quality tests with respect to their effectivity and effi-

ciency.

• A coverage framework, named Paths, that provides im-

mediate feedback at the method level and more detailed

on-demand feedback at the statement level.

• A realization of our approach by providing integrated tool

support for the Squeak/Smalltalk IDE and an assessment

of the benefits and costs of our approach by applying it

to several existing software systems.

2012 10th International Conference on Creating, Connecting and Collaborating through Computing

978-0-7695-4672-8/12 $26.00 © 2012 IEEE

DOI 10.1109/C5.2012.7

60

The remainder of this paper is structured as follows:

Section II introduces our motivating example and explains

contemporary challenges in testing. Section III presents test

quality feedback as a guide to improve effectivity and effi-

ciency of test suites. Section IV describes our implementation.

Section V evaluates the practicability and applicability of our

approach to arbitrary projects. Section VI discusses related

work, and Section VII concludes.

II. ENSURING ADEQUATELY TESTED PROGRAMS

In this section we introduce a motivating example for

an incompletely tested application that serves as basis for

our discussion of challenges in testing. By this example we

demonstrate test quality feedback in Section III.

A. An Introduction to AweSOM

AweSOM is an implementation of a SOM (Simple Ob-

ject Machine) virtual machine in Squeak/Smalltalk [7]. This

research prototype realizes the high-level environment for

running and interpreting SOM’s file-based Smalltalk dialect.

AweSOM main components compile SOM Smalltalk files,

interpret byte code, collect garbage from memory, bootstrap

the virtual machine, and provide core functionality. Awe-

SOM’s implementation includes more than 4,000 lines of code

in 750 methods and 69 classes and is the result of two years

of work by four students and one post-doc researcher. The

test base consists of 125 unit tests. The unit tests verify each

component on its own and cover 76.66 % of all methods in

about 20 seconds.

B. Challenges in Testing

Although developers have used test-driven development [1]

during the implementation of AweSOM, they ran into chal-

lenges regarding their test base. The coverage rate of the

system stagnates at about 80 % and developers often find

defects that are not covered by test cases. An increase in

coverage is difficult to achieve since most of the not covered

parts require much more testing effort. Existing coverage tools

list around 150 untested methods but their feedback neither

includes what is important to invest development time in nor

who is able to write missing tests with the least effort.

Furthermore, we observe that running all unit tests requires

about 20 seconds. Thus, developers do not run them after each

code change and so they get notified of mistakes later than

necessary. Profiling specific test cases is insufficient to find

common performance bottlenecks: a profiler can neither show

similarities nor differences between unit tests.

Numerous studies [6], [8], [4] report similar observations

during software testing. On the one hand test coverage moti-

vates developers to write more tests and so it seems to increase

the reliability of systems [9]. On the other hand developers

complain that they do not know how much code is covered

and how well the tested code is [6]. No underlying theory

relates coverage with quality and so these studies can best

suggest elementary guidelines [8]. For instance, a company

might require developers to achieve 80 % statement coverage.

Figure 1. Method coverage of the AweSOM example. The tree map
visualization is separated vertically with a black thick line. On the left
the green and red boxes represent unit test methods while the other boxes
represent helper methods for these unit tests. On the right the boxes represent
non unit test methods of the system under observation. A box is dark if at
least one test executes the method and bright otherwise.

Nevertheless, without details about the remaining 20 % it is

hard to decide if all important system parts are sufficiently

tested. From these studies and our own experience we argue

that there is a need for developers to get more feedback about

the quality of their tested systems.

III. TEST QUALITY FEEDBACK

Through the use of the AweSOM example we present

test quality feedback as a guide to improve effectivity and

efficiency of unit tests.

A. Effectivity Feedback

Effectivity feedback reveals locations that are worthwhile

increasing the testing effort through the following stages:

1) a visualization presents an overview of the entire system,

revealing inadequately tested parts;

2) then a developer can use additional static metrics (e.g.,
method size or complexity) to emphasize suspicious

parts that require immediate attention;

3) if necessary developers can request more detailed cov-

erage information for each suspicious part;

4) finally the visualization proposes a list of experts most

qualified for writing missing tests for suspicious parts.

We now detail each of these stages using AweSOM as a

running example and show how our effectivity feedback leads

us to improve AweSOM’s reliability.

a) Finding Inadequately Tested System Parts: The first

stage consists in presenting a high-level view of the system

under observation and its test coverage information in form

61

of a compact and scalable tree map [10]. Such a visualization

allows for a high information density compared to a list or

class diagram. Figure 1 presents the visualization for the

AweSOM example. The visualization represents packages as

columns and their classes as rows. Each class represents each

of its methods as a box within the class. Packages, classes, and

methods are sorted alphabetically and for a clear separation

we distinguish between test classes on the left-hand side and

application classes on the right-hand side. A developer can

interactively explore the visualization to get more details about

a specific method such as its name, the tests that cover it,

and metric values (e.g., complexity). The visualization colors

a unit test method in green or red if the test respectively

succeeds or fails. The visualization uses brightness to indicate

system methods coverage (dark indicating coverage). As a

result, a box that is either red (indicating failing test) or bright

(indicating no coverage) requires attention from the developer.

The tree map visualization can represent applications with

thousands of methods on a standard screen. This visualization

allows hiding some specific methods (e.g., accessors) and

summarizing large classes to cope with even larger systems.

When a large class is summarized a developer can click its box

to get a new and separate tree map visualization dedicated to

the class and all its implementation details. The organization of

packages, classes, and methods in the tree map makes finding

a particular element simple, even for large systems.

Using Figure 1 a developer sees that most failing tests

are grouped within a single class (red boxes, top left of the

figure). Additionally, a developer sees that some classes are

not covered by unit tests at all (bright boxes, bottom right of

the figure). Hovering with a mouse on the tree map reveals the

names of these classes: SOMClassTest, SOMString and

SOMSystem.

b) Emphasizing Suspicious System Parts: The second

stage consists in emphasizing suspicious system parts through

the use of static source code metrics (e.g., lines of code,

complexity, or any other metrics the developer implements).

The tree map uses the color hue to represent the method’s

result for the selected metric from green (for lowest results)

to red (for highest results). Additionally, the method’s box will

be dark if any unit test covers the method. As a result, a system

part with a bright and hot color requires more attention from

the developer: such parts are more visible because sufficiently

tested system parts are hidden by dark colors.

The left-hand side of Figure 2 shows an extract of Awe-

SOM’s tree map and some inadequately tested methods. In

this figure, the hue describes the method’s complexity. The

developer sees that one method is both complex (red) and not

covered by any test (bright). Hovering reveals that the method

name is assembleIn: and is part of the SOMMethod-
GenerationContext class.

c) Refining Coverage Analysis: The third stage consists

in refining the coverage analysis for a suspicious method

emphasized in the previous stage. When a developer selects

a particular method in the visualization a new editor pops up

and shows the method source code. In the background, our

Figure 2. On the left-hand side an extract of a tree map where darkness
represents coverage (as in Figure 1) and hue represents complexity. One of
the boxes is both bright (inadequately covered) and hot (complex) revealing
a suspicious method. On the right-hand side an editor shows the source code
of this method. Unit tests cover only the underlined statements.

coverage framework, named Paths, executes the tests that cover

this method to collect statement-level coverage information.

Upon completion Paths updates the editor with the covered

statements underlined. As statement-level coverage is costly to

compute, we restrict the performance decrease only to methods

of interest and offer developers both fast access to method

coverage and optionally refined statement coverage.

The right-hand side of Figure 2 shows a statement-level

coverage analysis of the suspicious method emphasized in the

previous stage. The developer sees that no test executes the

branch for creating a primitive.

d) Identifying Experts: Once a developer finds an in-

adequately tested method the fourth stage allows for the

identification of experts for implementing the missing tests.

We argue that the required testing effort depends on individual

skills and knowledge about the system under observation:

Similarly to the debugging activity [11] more experienced

developers invent better hypotheses than novices. To find

the expert of a particular method our approach requires that

developers use a version control system: Our Paths framework

mines the version control system and finds the developer with

the most commits for this particular method. Our approach

can additionally determine an expert by analyzing who last

changed the method, who wrote the initial implementation, and

who changes the method the most frequently [12]. Depending

on projects’ needs, we allow developers to choose the proper

metric for expert knowledge. When applied to the whole

system the visualization assigns each expert a unique color

by dividing the hue color wheel depending on the number of

experts. As a result of this visualization a developer can find

experts to increase coverage of suspicious methods, classes,

or packages.

Figure 3 illustrates AweSOM’s experts for all methods.

Except for the green and red of the unit test methods on the

left there are five colors for five experts. A developer sees that

the pink expert is better suited to improve coverage of the

SOMSystem class (bottom right of the figure).

B. Efficiency Feedback

Efficiency feedback identifies run-time and memory bottle-

necks of unit tests so that developers are able to improve their

test performance with limited efforts. Our approach presents

62

Figure 3. A tree map for the AweSOM example where darkness represents
coverage (as in Figure 1) and hue represents authorship (except on the left
where green and red indicates unit test status).

efficiency feedback using the same tree map visualization as

for effectivity feedback. The tree map reveals long running and

frequently called methods as well as classes that instantiate a

large number of objects.

In the following we detail how efficiency feedback works.

We describe how efficiency feedback reveals the reasons for

long running tests of AweSOM and permits their correction.

e) Run-time Bottlenecks during Testing: Our approach

collects performance characteristics for each method during

the execution of test suites. Then our approach summarizes

these data inside the tree map. Our approach implements three

different run-time measures:

• The call measure is a count of the number of times a

particular method has been called. This measure helps in

detecting methods that are called the most.

• The tree measure is a count of the total time required to

execute a method from its call to its return. This measure

helps in analyzing entry points into long running behavior

such as expensive API calls or large loops.

• The leaf measure is a count of the time required to

execute a method without including the methods it calls.

This measure helps in finding methods requiring much

execution time such as I/O operations.

The tree map uses the color hue to represent a method’s

run-time measure from blue (for lowest results) to red (for

highest results).

To understand why running all unit tests of AweSOM takes

so long (20 seconds for 125 unit tests) a developer starts by

using the tree measure on the tree map as shown in Figure 4.

The developer sees that the loadAndCompileSOMClass-
:stub: method is more red than other methods: indeed,

each call to this method requires about half a second and

this method is called 20 times during testing. As a result,

Figure 4. Required method run-time per call for all AweSOM tests. Red hot
spots highlight long-running methods whereas blue methods are quite fast.

10 seconds of the total execution time of the test suite are

passed within this method. The developer decides to introduce

a caching mechanism in this method which approximately

divides the total execution time by two.

f) Memory Consumption of Test Objects: Efficiency feed-

back also reveals test cases that create a large number of

system objects. For each test case our approach counts the

number of instances of each system class and presents this data

within the tree map. In this visualization, the tree map only

presents packages and classes, while the color hue represents

the number of instances of each system class from blue (for

no instances) to red (highest number of instances).

In the AweSOM example of Figure 5, efficiency feedback

identifies numerous instances of the SOMArray and SOM-
Object classes as these two classes are more red than the

others. By analyzing in greater details the code that calls each

of the constructors of these classes the developer decides that

the code is correct.

IV. IMPLEMENTATION

For the realization of test quality feedback, we give an

overview of our Paths coverage framework and our extended

test runner named PathMap.

A. Paths Coverage Framework

Test quality feedback is based on a lightweight method

coverage and profiling framework that provides on-demand

refinements at the statement level. Doing this coverage on-

demand is necessary as a complete statement-level coverage

analysis of the whole system would slow down the execution

by a factor of 100 [13]. At the level of methods, we collect

run-time information with flexible method wrappers [14]: a

wrapper introduces new behavior before and after the exe-

cution of a specific method without changing its behavior.

Depending on the chosen test quality feedback, wrappers

63

Figure 5. The tree map summarizes the number of created instances during
testing. The color spectrum ranges from blue (only a few objects) to red (a
large number of objects). This visualization only represents packages and their
classes since methods are not important for memory consumption.

collect covering tests, method calls, or execution time for each

system method. The framework stores the measurements and

makes this data available to any interested tools including

PathMap. To compute on-demand statement-level coverage for

a specific method, the framework takes its covering tests and

executes them in the background. A wrapper dedicated to this

method records covered statements by executing method’s byte

code with a special Smalltalk interpreter.

B. PathMap Test Runner

Our Paths framework is the foundation for extending the

test runner of the Squeak/Smalltalk IDE with our approach.

Figure 6 is a screenshot representing our extended test runner

assigned to the AweSOM software system. This test runner is

composed of three main panes: the pane on the left lists all

test classes of the software system; the middle pane presents

the tree map of the software system, which is composed of a

morphic hierarchy; the pane on the right allows for changing

various options of the tree map visualization and presents

a legend. The test runner also presents a status bar on the

top displaying a summary of the test suites execution and a

status bar on the bottom displaying a summary of metrics

on the system. It is possible for a developer to interact with

the tree map: hovering on a box results in the name of the

attached method, its class and its package being displayed

while clicking on a box results in a menu being displayed.

This menu allows the developer to get additional information

about the method such as its source code (as in Figure 2),

the value of some metrics (e.g., complexity and number of

covering tests). The menu also lets the developer inspect the

run-time behavior of the method and debug it [15].

Figure 6. Extended test runner implementing our approach for Squeak.

C. Discussion

We argue that our approach can be adapted to other object-

oriented programming languages. For implementing our Paths

coverage framework, the language and its libraries have to

support dynamic and static analysis techniques. While the dy-

namic analysis for method coverage can be implemented with

aspect-oriented programming [16], statement-level coverage

depends on the language features. For instance, in C++ many

coverage tools insert probes into the source code and in Python

the interpreter offers a simple hook function for a fine-grained

run-time analysis. Regarding static analysis, developers can

rely on several external analysis tools or the reflection capa-

bilities of the language. Finally, our PathMap tool is mostly a

visualization concept whose implementation only depends on

the underlying IDE user interface. For instance, Eclipse can be

extended with a plug-in for rendering the tree map and Paths

data.

V. EVALUATION

This section evaluates the benefits and efficiency of our

approach for different software systems.

A. Practicality

We evaluate the practicality of our approach and extended

test runner through the study of two software systems: 4Con-

ferences and Seaside.

1) 4Conferences: The first system, named 4Conferences, is

an undergraduate student project. This project is a conference

management web application permitting activities such as the

registration of attendees, the organization of payments, the

printing of badges, and the planning of talks. The project was

developed in two phases by two distinct groups of students

in the context of a software engineering course. The first

phase resulted in a working system with basic features only

and consisted of 5 packages, 77 classes, 1126 methods, and

21.58 % coverage by unit tests.

For the second phase, we asked a group of 16 bachelor

students to add a specified set of features to the system.

64

Figure 7. 4Conferences before and after the second phase of the implementation which used our test quality feedback

Writing unit tests was not mandatory but the students decided

they needed some more to better understand the system and to

prevent regression. We proposed them to use our extended test

runner. This second phase lasted 3 months and resulted in 7

packages, 131 classes, and 1813 methods. As a result of their

work the method coverage increased from 21.58 % in the first

phase to 69.33 % at the end of the second. Figure 7 shows

two tree maps. On the left-hand side the visualization shows

the system after the first phase: students have only tested the

model package. On the right-hand side the tree map shows the

system after the second phase.

The students told us they made extensive use of the test

runner and especially the effectivity feedback. They told us

the test runner helped them to find gaps in the coverage and

made it clear which new tests they had to write. Even if social

desirability biases this evaluation we argue that our student

project illustrates at least the applicability of our approach to

other systems and the improvements to the 4Conferences’ test

base.

2) Seaside: Seaside is an industrial web application frame-

work1 much larger than the previously described projects: In

version 3.0, Seaside consists of 60 packages, 402 classes, and

3830 methods. Seaside is an open source project implemented

by numerous developers not part of our research group.2

Figure 8 shows a tree map for the Seaside framework

where darkness represents coverage and hue represents method

size. This figure contains numerous large boxes summarizing

classes with too many methods (as explained previously). The

color of such class boxes is computed according to the average

size of its methods or another strategy such as maximum or

90 percentile. Clicking on such a box reveals a new tree map

dedicated to this class. Even for such a large project, our test

1http://www.seaside.st
2We acknowledge our participation in less than 1 % of the code base.

Figure 8. Test quality feedback for Seaside method coverage with lines of
code

runner is able to point out some gaps in the coverage of the

system methods (e.g., red boxes, bottom right of the figure).

B. Efficiency of PathMap

To evaluate the impact of using our test quality feedback

on a day-to-day basis, we measure the performance overhead

for two previously presented projects: AweSOM and Seaside.

We believe the chosen software systems are representative

of the kind of system our approach can be used for: AweSOM

is a mid-sized research prototype with high coverage whereas

Seaside is a much larger industrial programming framework

with medium coverage. In the case of AweSOM the evaluation

takes into account the changes discussed in Section III-B.

65

All experiments were run on a MacBook with a 2.4 GHz

Intel Core 2 Duo and 4 GB RAM running Mac OS X 10.6.6,

using Squeak version 4.1 on a 4.2.1b1 virtual machine. Table I

presents the results of this evaluation in four parts:

AweSOM Seaside

System
properties

Classes 69 402
Methods 750 3830

Tests 125 692
Coverage 81.7 % 57.9 %

One-time
cost

Creation of tree map (s) 1.0 7.1
Complexity per method (s) 0.1 0.5
Authorship per method (s) 3.3 11.4

Run-time
overhead

Std execution time of all tests (s) 9.8 9.2
With method coverage (s) 22.5 (2.3x) 26.6 (2.9x)

With tree profiling (s) 54.9 (5.6x) 111.4 (12.1x)

Refine. cost Avg. time for statement coverage (s) 3.7 1.0

Table I
PERFORMANCE CHARACTERISTICS OF TEST QUALITY FEEDBACK.
MEASURES INDICATED WITH ’(S)’ ARE EXPRESSED IN SECONDS.

1) The system properties part presents various information

about the software system.

2) The one-time cost part presents the cost of analyzing the

source code of the software system. Creating the tree

map view can take a significant amount of time for a

large project such as Seaside (7 seconds). However this

creation is done only once, when the test runner opens.

Our current implementation tends to be slow because

it creates for each source code entity a separate morph

object. We can improve this performance by drawing the

tree map within a single morph. PathMap can calculate

the complexity of all methods of the software systems

in a very efficient way (half a second for Seaside).

Calculating authorship of all methods is much more

costly as this requires mining the repository with I/O

operations. It is important to note that calculating such

static properties is done only once for each method.

3) The run-time overhead part presents the overhead of

executing the test suites with additional measures. For

measuring the run-time overhead, PathMap executes the

entire unit test suite with and without test quality feed-

back. For example, running all unit tests of AweSOM

takes 9.8 seconds when no feedback is required and

takes 22.5 seconds (2.3 times slower) when method cov-

erage is required. Measuring performance characteristics

for each method during the execution of test suites takes

a significant amount of time. We plan on using a more

advanced performance measurement technique (such as

sampling) in future works.

4) The refinement cost part presents the cost of refining

statement coverage for one particular method. For ex-

ample, calculating the statement-level coverage of a

method for the AweSOM system takes 3.7 seconds on

average. This computation is slower for methods that

are covered by a lot of unit tests as each of them

must be executed to list the covered statements. Because

AweSOM methods tend to be covered by more tests,

the average cost is higher than for Seaside. An initial

improvement would require stopping the execution of

the unit tests as soon as all statements of a method

are covered. Providing statement coverage by default

instead of method coverage would result in an execution

of all the test cases a magnitude slower. We argue on-

demand analysis of statement-level coverage provides a

good trade-off between performance and level of details.

We have used our coverage framework and extended test

runner in several other projects not covered here such as Orca,

a web application framework that translates Smalltalk code to

JavaScript, and the Smalltalk Squeak compiler. In all projects

we found that our extended test runner could be used in place

of the standard Squeak Smalltalk test runner. Nevertheless,

while evaluating our approach with Seaside we found that we

had to improve the profiling overhead so that developers can

more frequently rely on the proposed feedback.

VI. RELATED WORK

There exists numerous testing tools providing code coverage

feedback. Yang et al. surveyed numerous of them [6]. In their

work they emphasize the lack of support of these tools for

“prioritization”, i.e., finding parts in the code that require more

tests. Our work improves this situation.

Hapao is a test coverage tool which uses a graphical

visualization to facilitate the discovery of not (completely)

tested code [17]. To do so, classes and methods are represented

as boxes with various heights, widths, colors and borders

corresponding to various criteria such as complexity, size

and coverage. With some experience with the visualization

it is possible to rapidly detect graphical patterns within the

visualization informing the developer of missing test cases.

However, Hapao does not present any other information than

coverage such as time and memory consumption. Moreover,

our tree-map-based visualization is more scalable. For in-

stance, Hapao’s visualization of the Seaside core system is

more than 12.000 pixels large, which hardly fits into a standard

screen, whereas our visualization fills the space provided by

the user and nothing more.

TestQ is a tool capable of statically analysing test code [18].

TestQ proposes various visualizations helping the developer to

find problematic test suites, e.g., test suites that are very long

or that exercise too much. Their work is complementary to

ours in that we focus more on dynamic information such as

coverage and run-time performance.

Sonar3 is a software quality platform which leverages vari-

ous static code analyses tools. Sonar presents results of these

tools within a unified and customizable web interface which

makes it possible to navigate the source code and visualize

analysis results. However, Sonar requires all analyses to be

conduced before-hand, preventing immediate feedback to the

developer, and does not propose to change the problematic

code, slowing down the enhancement of the code. Sonar is then

3http://www.sonarsource.org/

66

better integrated with a continuous integration system whereas

our approach is better integrated within the IDE.

Jones et al. [19] proposed a seminal work that aims at

finding faults within a software system by comparing unit

test results. They offer a visualization where each statement is

represented as a line of one-pixel height, each line with a color

indicating how suspicious it is to contain a fault. This work

and the numerous that follow propose to leverage existing unit

test cases to find faults based on the passing/failing state of

each test case and a coverage analysis at the statement level.

They however require a good unit test suite as input that our

work aims to provide.

The visualization of our approach is based on tree maps [10]

that visualize arbitrary hierarchical structures by subdividing

a given area into small rectangles. In the course of time

several other approaches have improved the standard layout

algorithm: they prevent long rectangles that are difficult to

see [20] or they highlight objects that are also neighbors in

the hierarchical structure [21], [22]. We base our tree map on

the standard layout and limit the hierarchy depth to four, make

large rectangles zoomable on demand, and draw classes with

a thicker border to emphasize their included methods.

VII. CONCLUSION

Developers require feedback to ensure good coverage of

a software system and good quality of a test suite. Existing

tools can list untested system parts but fail to help develop-

ers prioritize their testing effort. These tools lack effectivity

feedback. Other tools can profile a specific test case to find

inefficient code but fail to profile a complete test suite which

prevents identification of common bottlenecks. These tools

lack efficiency feedback.

In this paper, we have proposed an integrated approach

where effectivity and efficiency feedback are combined to help

developers prioritize their testing effort. We have shown how

a single tree map visualization can be used to display infor-

mation such as coverage analysis, complexity, and authorship

of a complete system. We have also described a coverage

framework, named Paths, that provides method-level coverage

analysis by default and on-demand background analysis at the

statement level. We have shown how we extended the Squeak

Smalltalk test runner with an interactive tree map visualization.

Our approach has been successfully applied to several projects,

including by students unfamiliar with the approach.

We are currently expanding this work in several directions.

We are working with a graphic design expert to help us

choose the right colors for representing multiple information

in a single visualization (such as coverage and complexity).

We want to reduce the time that the developers have to wait

before getting feedback. To do so we are applying continuous

selective testing [23] which should result in an always up-to-

date tree map visualization.

REFERENCES

[1] K. Beck, Test-driven Development: By Example. Addison-Wesley
Professional, 2003.

[2] J. Lawrance, S. Clarke, M. Burnett, and G. Rothermel, “How Well Do
Professional Developers Test with Code Coverage Visualizations? An
Empirical Study,” in VL/HCC ’05: Symposium on Visual Languages
and Human-Centric Computing, 2005, pp. 53–60.

[3] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change, 2nd ed. Addison-Wesley Longman, 2004.

[4] S. Berner, R. Weber, and R. K. Keller, “Enhancing Software Testing
by Judicious Use of Code Coverage Information,” in ICSE ’07: 29th
International Conference on Software Engineering, 2007, pp. 612–620.

[5] P. Piwowarski, M. Ohba, and J. Caruso, “Coverage Measurement Experi-
ence during Function Test,” in ICSE ’93: 15th International Conference
on Software Engineering, 1993, pp. 287–301.

[6] Q. Yang, J. J. Li, and D. M. Weiss, “A Survey of Coverage-Based
Testing Tools,” Computer Journal, vol. 52, pp. 589–597, August 2009.

[7] M. Haupt, R. Hirschfeld, T. Pape, G. Gabrysiak, S. Marr, A. Bergmann,
A. Heise, M. Kleine, and R. Krahn, “The SOM Family: Virtual Ma-
chines for Teaching and Research,” in ITiCSE ’10: 15th Conference on
Innovation and Technology in Computer Science Education, 2010, pp.
18–22.

[8] X. Cai and M. R. Lyu, “The Effect of Code Coverage on Fault Detection
under Different Testing Profiles,” in A-MOST ’05: 1st International
Workshop on Advances in Model-based Testing, 2005, pp. 1–7.

[9] M. C. K. Yang and A. Chao, “Reliability-estimation & Stopping-rules
for Software Testing, Based on Repeated Appearances of Bugs,” IEEE
Transactions on Reliability, vol. 44, no. 2, pp. 315–321, 1995.

[10] B. Johnson and B. Shneiderman, “Tree Maps: a Space-filling Approach
to the Visualization of Hierarchical Information Structures,” in VIS ’91:
Proceedings of the 2nd Conference on Visualization, 1991, pp. 284–291.

[11] J. Anvik, L. Hiew, and G. C. Murphy, “Who Should Fix this Bug?”
in ICSE ’06: 28th International Conference on Software Engineering,
2006, pp. 361–370.

[12] T. Fritz, G. C. Murphy, and E. Hill, “Does a Programmer’s Activity
Indicate Knowledge of Code?” in ESEC-FSE ’07: 6th Joint Meeting of
the European Software Engineering Conference and the Symposium on
the Foundations of Software Engineering, 2007, pp. 341–350.

[13] M. Haupt, M. Perscheid, and R. Hirschfeld, “Type Harvesting - A Prac-
tical Approach to Obtaining Typing Information in Dynamic Program-
ming Languages,” in SAC ’11: 26th Symposium on Applied Computing,
2011, pp. 2169–2175.

[14] J. Brant, B. Foote, R. Johnson, and D. Roberts, “Wrappers to the
Rescue,” in ECOOP ’98: 12th European Conference on Object-Oriented
Programming, 1998, pp. 396–417.

[15] M. Perscheid, B. Steinert, R. Hirschfeld, F. Geller, and M. Haupt, “Im-
mediacy through Interactivity: Online Analysis of Run-time Behavior,”
in WCRE ’10: 17th Working Conference on Reverse Engineering, 2010,
pp. 77–86.

[16] T. Gschwind and J. Oberleitner, “Improving Dynamic Data Analysis
with Aspect-Oriented Programming,” in CSMR ’03: 7th European
Conference on Software Maintenance and Reengineering, 2003, pp.
259–268.

[17] V. P. Araya, “Test Blueprint: An Effective Visual Support for Test
Coverage,” in ICSE ’11: 33rd International Conference on Software
Engineering, 2011, pp. 1140–1142.

[18] M. Breugelmans and B. van Rompaey, “TestQ: Exploring Structural
and Maintenance Characteristics of Unit Test Suites,” in WASDeTT-1:
1st International Workshop on Advanced Software Development Tools
and Techniques, 2008.

[19] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of Test Infor-
mation to Assist Fault Localization,” in ICSE ’02: 24th International
Conference on Software Engineering, 2002, pp. 467–477.

[20] B. Shneiderman and M. Wattenberg, “Ordered Treemap Layouts,” in
INFOVIS ’01: Symposium on Information Visualization, 2001, pp. 73–
78.

[21] M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi Treemaps for
the Visualization of Software Metrics,” in SoftVis ’05: Symposium on
Software Visualization, 2005, pp. 165–172.

[22] J. J. Van Wijk and H. van de Wetering, “Cushion Treemaps: Visual-
ization of Hierarchical Information,” in INFOVIS ’01:Symposium on
Information Visualization, 1999, pp. 73–78.

[23] B. Steinert, M. Haupt, R. Krahn, and R. Hirschfeld, “Continuous
Selective Testing,” in XP ’10: Agile Processes in Software Engineering
and Extreme Programming, 2010, pp. 132–146.

67

