
(Author Version) Towards Empirical Evidence

on the Comprehensibility of Natural Language

versus Programming Language

Patrick Rein, Marcel Taeumel, and Robert Hirschfeld

Software Architecture Group, Hasso Plattner Institute, University of Potsdam, Germany

Abstract In software design teams, communication between programmers and

non-programming domain experts is an ongoing challenge. In this communication,

source code documents could be a valuable artifact as they describe domain logic

in an unambiguous way. Some programming languages, such as the Smalltalk pro-

gramming language, try to make source code accessible. Its concise syntax and mes-

sage-passing semantics are so close to basic English, that it is likely to appeal to

even non-programming domain experts. However, the inherent obscurity of tech-

nical programming details still poses a significant burden for text comprehension.

We conducted a code-reading study in form of a questionnaire through Amazon

Mechanical Turk and SurveyMonkey. The results indicate that even in simple prob-

lem domains, a simple English text is more comprehensive than a simple Smalltalk

program. Consequently, source code in its current text form should not be used as a

reliable communication medium between programmers and (non-programming)

domain experts.

1 Introduction

Software can generate value in many different domains whose experts are not

necessarily programmers. Thus, the creation and maintenance of such software for

domain-specific projects leads to collaboration of domain experts and programmers.

Both parties benefit from frequent communication and knowledge exchange. On the

one hand, experts need to articulate the details they expect programs to do such as

convenient data collection, processing, and visualization. On the other hand, pro-

grammers need to articulate technical possibilities and challenges to guide (and

sometimes constrain) the experts’ expectations. Eventually, such a symbiosis of two

professions can yield the creation of something more valuable than the sum of its

individual contributions (see figure 1).

2

Fig. 1. An illustration of the way domain experts and programmers exchange knowledge when

designing software systems.

In practice, programmers and domain experts try to establish a shared language

to reduce the cognitive overhead in their discussions. Given an English-speaking

team, such language might be regarded as “project-specific English” or “domain-

specific English”. The use of a shared vocabulary can reduce the number of com-

prehension errors and improve the team performance. This way, domain experts are

required to express the relevant properties and rules in consistent terms. Program-

mers should apply these terms during code-authoring tasks. Given that a software

system is being designed, we made two major observations: (1) all words in this

language must have a consistent meaning and (2) expressions (or phrases) in this

language have to be (made) executable for computers.

One approach to achieve such a shared communication medium is the use of

(domain-specific) source code. Programmers are able to design domain-specific

documents that still have meaning for the computer. Hidden technical layers can

make the visible source code look like it was written in a (non-technical) domain

language. Familiarity of (visual) form is often the basic argument for why domain

experts might be able to think “in code”. Eventually, there will always be complex,

low-level details in the source code, but experts are not required to ever see them.

There are many domains where natural-language text plays an important role for

capturing project-specific details. In such domains, the application of source code

as a communication medium seems straightforward. While there might be technical

details that distract non-programming experts, domain-specific vocabulary is dis-

coverable in the form of high-level, executable code expressions [Evans2004]. This

assumption leads to our research question:

How can program source code be used as a frequent communication medium

when exploring (or discussing) domain-specific terms and rules, which can

also be expressed as natural-language text?

3

Generally, when using source code as a communication medium, two opposing

factors might affect the comprehensibility. The first factor is that domain-specific

source code makes aspects of the domain knowledge explicit. For example, types

of relevant objects of the domain, relationships between objects, or rules of the do-

main all have to be made explicit in order for source code to become executable.

This explicit description of knowledge reduces ambiguity and creates a detailed de-

scription of domain knowledge. In contrast, even domain-specific source code doc-

uments inevitably include the formal syntax and the complex semantics of the pro-

gramming language. For a reader with little to no programming experience, these

might impose an additional complexity burden when trying to understand even sim-

ple code segments.

We suspect this additional complexity burden to outweigh the benefits of a less

ambiguous description of domain knowledge, at least for non-programming readers.

We see two implications if our claim holds. First, given the current means for de-

signing domain-specific programming languages, there is still a major need for ex-

ternal documentation and thus other (maybe non-executable) forms of representing

domain knowledge. Second, there is a significant value for language researchers to

explore interactive means for programming beyond textual languages.

We present the results of a user study based on a controlled experiment on the

assumption that even domain-specific, object-oriented source code poses compre-

hension challenges for non-programmers.

We chose the object-oriented paradigm because real-world domains can easily

be modeled as object collaboration [Evans2004]. We chose Smalltalk [Gold-

berg1983] as a representative for an object-oriented programming language because

its grammar is close to basic English. There, simple phrases consist of subject, pred-

icate, and object. In Smalltalk, there are also objects that collaborate by sending

messages. In comparison to English, the Smalltalk receiver of a message send is a

grammatical subject, the Smalltalk message itself forms the grammatical predicate,

and any message payload can be seen as grammatical objects. For example, the

scenario “Every Friday, the postman delivers some mail to my address” translates

to: “Date today dayOfWeek = #Friday ifTrue: [aPostman delivers: someMail to:

myAddress]”. In this way, Smalltalk can easily be applied to hide technical details

such as request handling and resource management.

The hypothesis to test in this work reads as follows:

Given a problem domain with simple rules, people with little to no program-

ming experience understand less details from a Smalltalk program than from

an English text document.

Here, we define “simple” as (1) in the order of 10 domain rules, (2) in the order

of 5 kinds of objects (or concepts), (3) less than 300 lines of Smalltalk code, and (4)

less than 500 words English text. We base these figures on personal experiences

from past projects. We conducted the experiment with 31 participants. As a result,

we found that while participants can answer questions about scenarios expressed in

4

source code documents, they answer more questions correctly when working with

a corresponding natural language document.1

In section 2, we describe our experimental setup in detail by describing the lay-

out, tasks, and the participants. Our user study is a questionnaire, which we carried

out through Amazon Mechanical Turk (MTurk) and SurveyMonkey and whose im-

plementation we describe in section 3. In section 4, we present and discuss our

quantitative and qualitative results. In section 5 we give an overview of related work

in terms of text and code comprehension. Finally, section 6 presents concluding

thoughts and we outline future work.

2 Experimental Design

As our experimental design is not based on a previous design, we first describe

our experimental layout in detail including the operationalizing of the relevant var-

iables. We further describe the design of the scenarios used in the comprehension

tasks, as well as the design of the used questionnaires. As we conducted the exper-

iment through MTurk, we report on the measures we took to ensure that we got

participants with the target background.

2.1 Experimental Layout and Operationalizing of Variables

We conducted a quantitative user study through a controlled experiment with a

fixed setup [Robson2002]. Our hypothesis addresses the difference in comprehen-

sion for two forms of text documents: (1) natural language and (2) programming

language. Thus, we had to operationalize the variables (a) text comprehension and

(b) programming experience. Note that we target English-speaking readers with lit-

tle to no programming background. This renders such an experimental design very

challenging in terms of transparency and reproducibility. Consequently, we em-

ployed a within-subject layout to at least cope with variations among different par-

ticipants and focus on mitigating carry-over effects between rounds for individual

participants. We designed two similar tasks, namely a conference-registration pro-

cess and a store-checkout process, whose order we counter-balanced, including the

text-or-code treatments. On the downside, we require sets of four participants to

equally serve all groups (as depicted in figure 2):

• Group A: Round 1 is Text (Registration), Round 2 is Code (Check-out)

• Group B: Round 1 is Text (Check-out), Round 2 is Code (Registration)

• Group C: Round 1 is Code (Registration), Round 2 is Text (Check-out)

1 You can access the archived materials used for conducting the experiment and the unprocessed

and pre-processed data from https://doi.org/10.5281/zenodo.2540989

5

• Group D: Round 1 is Code (Check-out), Round 2 is Text (Registration)

Having such a setup, we depend on proper training to familiarize all participants

with our notions of text document, English style, and programming style. In addition

to learnability, we do not address other carry-over effects explicitly.

One could argue that a participant’s motivation might affect the upper time limit

of a round. At the same time, we expect participants to unnecessarily rush through

rounds, which might make a lower time limit more relevant. As we had no prior

experience with similar experiments, we did not impose any time limits.

Fig. 2. The overall experiment layout showing all four groups.

To collect measurable results, we operationalized text comprehension through

answers in a questionnaire about the document’s content. Thus, we take the number

of correct answers as a measure of the level of comprehension. For content presen-

tation, we chose English as the natural language to attract many potential partici-

pants. We chose Smalltalk as the programming language, because of its small syn-

tactic overhead [Goldberg1983]. Source code can be expressed in a concise fashion,

sometimes almost matching their English-reading explanation.

To discard participants early in the process, we operationalize programming ex-

perience as the number of lines of code written in the past reported through formal

self-evaluation. We expect this number to be very low or zero at best. Also, we

query their experience with major programming paradigms such as the object-ori-

ented paradigm [Wegner1987] or the functional paradigm [Abelson1996] on a five-

point Likert Scale [Robson2002].

Finally, we want to stress our goal of simplicity in our experimental tasks (or

scenarios). On the one hand, we favor simple English text. It should be neither lit-

erarily verbose nor artificially instructive. On the other hand, we favor simple pro-

gram code in a clean style, closely resembling the vocabulary of the task’s domain

(i.e., conference registration or Web shop check-out). Consequently, our experi-

mental design does not investigate isolated features of the documents but only the

difference between a particular style of natural-language text and a particular style

of programming-language code. To inform the creation of more detailed hypothe-

ses, we collected qualitative data on the aspects of the documents the participants’

thoughts and struggles in the debriefing phase.

2.2 Scenarios: Creation Process and Document Properties

Participants complete two rounds back-to-back. First, they answer questions

about one scenario described in one language. Second, they answer questions about

6

another (similar) scenario described in another (dissimilar) language. For each sce-

nario, there are ten questions about the content and two control questions to verify

participant authenticity, that is, to filter mechanical (or unserious) behavior. We do

not impose time limits on the tasks.

Both scenarios are representative in the sense that they model existing, software-

supported processes (or systems). In one scenario, we describe a conference-regis-

tration process, adapted from a real-world example one of the authors worked on.

In the other scenario, we describe a shop-checkout and delivery-planning process,

which has common characteristics of today’s online-shopping processes.

Each scenario’s domain guides the vocabulary, concepts, and rule of the descrip-

tions (and questionnaires). The conference-registration process describes the online

registration of a conference. It describes the interactions with prospective confer-

ence visitors, rules for deciding which extra services they can book, rules for decid-

ing whether they can be registered or are put on a waiting list, and special cases for

visitors with invitation codes. The shop checkout process describes the interactions

with a customer of an online store for books, rules for deciding whether a customer

is eligible for certain shipping modes, and a procedure for determining a time of

delivery.

Both scenarios are similar yet different. They are similar in terms of their extent

and structure, which addresses number of phrases (or code lines) and the choice of

(English or Smalltalk) syntax. Yet, they are different considering their source of

complexity. While, the registration process is simple with a complex set of rules for

the visitor, the check-out process is more complex with a simple set of rules for the

delivery slot. We discussed the comparability of tasks in section 4.4 as one source

of threats to validity in our experimental setup.

To ensure similar structure, we first wrote the natural-language text and only

then the corresponding code. After code authoring, we iterated over the English

description, again, to align any phrases that turned out to be difficult to express in

Smalltalk. This iterative procedure revealed unnecessary verbosity in the English

text and artificial abstractions in the Smalltalk code. We formulated the question-

naire afterwards.

The style of writing can influence the comprehensibility of the documents. We

found several rules to guide the application of the English language and the selec-

tion of Smalltalk features. While our main goal was to increase similarity between

document representations, it helped us maintain a simple, yet representative, base-

line. The rules for our English texts are:

• Overview before detail: Both scenarios describe processes. Thus, the reader

should grasp the entire scope before diving into process-step details.

• Paragraphs represent single steps and rules: Readers might have to look up

details in the description repeatedly as questions are answered. That look-up can

be simplified if process steps and rules are at the granularity of text paragraphs.

• Alternatives begin with “if”: There are conditions, which divide the processes

into branches to be understood and recalled frequently. Thus, the reader should

7

recognize such branches directly at the beginning of such sentences, not in the

middle.

• No synonyms: Once decided on characteristic vocabulary for each scenario, the

reader should not be bothered with extra complexity through synonyms. We kept

a consistent vocabulary throughout process descriptions.

• No text emphasis: Being one characteristic difference between natural language

and programming language, we reserve elaborate emphasis (such as colors, bold

face, and italic face) for source code representation, not English text.

The rules for our Smalltalk code are:

• Objects first: Since Smalltalk favors the object-oriented programming para-

digm, we model domain concepts with objects (and object classes) as much as

possible.

• Descriptive identifiers: The vocabulary used to form Smalltalk expressions

should reflect the domain as much as possible. This includes identifiers for var-

iables and messages (or method names).

• No explicit loops: We want to avoid the cognitive effort of understanding loop

constructs in code [Robins2003]. Smalltalk offers a concise alternative, similar

to functional languages, with its collection protocol in the form of messages such

as #select:, #count:, #firstThat:.

• No recursion: We want to keep the concept of message look-up as simple as

possible. Thus, we want to avoid the idea of methods calling themselves repeat-

edly.

• No meta-programming: Smalltalk systems offer elaborate means to monitor

and modify themselves. This powerful mechanism adds cognitive overhead that

is not required for expressing simple domain rules. This includes the use closures

in anonymous functions.

• Descriptive data access: For each data field, use an eponymous message (i.e.

“field”) to read but “changeFieldTo:” to write that field value. While this is

against best practices in Smalltalk, pilot runs indicate that “field:” is too difficult

to understand.

• Minimize comments: Comments reflect any additional information not repre-

sented in the code directly. None of the comments contain relevant facts for the

questions.

Considering code formatting, we want to primarily guide document navigation

in the experiment. We are aware that this is different from how programmers con-

sume code in integrated programming environments. In particular, we use color to

highlight structure and guide message look up. We highlight identifiers that store a

value with a class described in the task in green and methods that can be looked up

in blue. Additionally, code for each class is set in a section starting with a distinct

heading. Each method is set as a distinct section (see figure 3). Overall, the code is

formatted according to a standard set of idioms [Beck1996]. As an example, English

text phrases correspond to Smalltalk code statements.

8

Fig. 3. A comparison of a textual section and the corresponding source code section, including the

actual type setting of the source code documents used during the experiment.

2.3 Questionnaires: Structure and Measurement

We designed questionnaires to gather quantitative data about the level of com-

prehension and qualitative data about general feedback on our experimental setup.

There are single-choice questions on the scenario details and free-text questions on

general concerns.

We distinguish two kinds of comprehension questions: (1) facts and (2) applica-

tions. First, questions about facts cover general properties and rules of the respective

process. Such questions usually begin with “In which of the following circum-

stances can the following happen?” Participants can read these facts directly from

the documents. Second, questions about applications require participants to assume

particular properties for processes in action and derive implications. Such questions

are usually like, “Given X, which of the following can happen?” or begin with “For

this question, imagine the following scenario: …”. Participants must therefore sim-

ulate the respective effect in their mind.

All comprehension questions are, virtually, single-choice questions. That is, even

if there is more than one correct answer, participants are only required to pick one.

We think that this is a fair trade-off for our hypothesis because multiple interpreta-

tions might be valid for vague (or abstract) descriptions. Note that for each question,

we added two answers that express generic comprehension issues:

• Nobody can read this fact out of the given materials.

• I cannot answer the question.

Participants can therefore indicate that the provided materials do not provide

enough information on some concern. We think that it is crucial in communication

9

to be able to consciously express “I don’t know” and guess “Nobody can know”.

This indicates that the current version of a document is not clear enough to serve as

baseline for knowledge exchange between people. Such documents are usually cre-

ated and maintained in an iterative manner. Mistakes can happen, waiting to be cor-

rected.

For the (qualitative) feedback questions, we wanted to collect as much additional

insight on our experiment and hypothesis as possible. Since we use MTurk, we can-

not interview and debrief participants in person. Thus, an emerging structure of in-

terview questions is not possible. Still, we encouraged participants to quote relevant

passages from the provided documents to help us understand and interpret their con-

cerns. We suggested the following topics for feedback: length of tasks, difficulty of

questions, and obstacles to understanding.

In the end, a high level of understanding means a high number of correctly an-

swered questions. We are aware that our selection of questions might not capture

the entire knowledge base the documents encode. Yet, we did not consciously in-

troduce irrelevant facts to distract or confuse participants.

2.4 Participants: Selection and Training

Our hypothesis addresses a wide range of people working in any field, but who

do not have elaborate programming skills. Thus, we employed volunteer sampling

by recruiting participants through MTurk to get a sample set of our target group.

Since we cannot personally interview participants upfront, we installed several au-

tomated guards to ensure authenticity and high-quality results:

• Basic engagement: We required participants to have the “Amazon Mechanical

Turk Master Worker” qualification, which indicates consistent high-quality work

in a variety of tasks with a variety of contractors (or domains?).

• Basic skills: We required participants to have a U.S. bachelor’s degree, because

we aim for scenarios that involve software developers and domain experts. We

want to investigate their ways of knowledge exchange.

• “Bot” detection: We inserted control questions to check for the participant’s

continuing attention. This might also reveal automatic (or unserious) behavior of

participants who just want to collect the reward through MTurk very quickly.

We verify the authenticity of participants with four control questions, which we

insert randomly throughout the questionnaires. Each question checks for common

knowledge or basic involvement with the provided material. They are as follows:

• Which of the following kinds of processes does the document describe?

• Which of the following numbers is less than 100?

• What kind of item does the store sell?

• Which one of the following things is generally considered the tallest?

10

Even if participants are genuine, engaged, and educated, they cannot know what

“little programming skills” means. They might accept this task erroneously, but

with good intentions. Thus, we operationalized programming experience as a for-

mal self-evaluation using questions to query written lines of code and familiarity

with common programming paradigms. We rejected participants who reported more

than 1000 lines of code. If such a number cannot be estimated, we resort to paradigm

familiarity on a five-point Likert Scale: strongly agree, agree, neither agree or dis-

agree, disagree, or strongly disagree. We provided the following statements to as-

sess:

• I am familiar with the logic programming paradigm.

• I am familiar with the functional programming paradigm.

• I am familiar with the object-oriented programming paradigm.

• I am familiar with the Smalltalk programming language.

We think that familiarity with the Smalltalk language can also bias our results.

Yet, we do not expect to find many Smalltalk programmers through Amazon Me-

chanical Turk. We rejected participants who expressed that they “strongly agreed”

or “agreed” to any statement.

As we assume that working with formal models other than programming lan-

guages (such as construction processes and rule sets, chemical equations, statistical

analysis, laws to some extent) might have a substantial influence on the performance

on our tasks, we recorded the participants’ experience with formal methods, and

their professional and educational background. We did not reject participants based

on this information.

With these filters in place, we recruited 35 participants with the expectation of

achieving 30 genuine submissions. We rejected one participant due to level of pro-

gramming experience, and ultimately recruited 36 participants, gaining 31 genuine

submissions.

Since our experiment design entails potentially unfamiliar tasks, we provided

training tasks to level relevant previous experience with reading comprehension

tasks and thus mitigate carry-over effects from learning between rounds. This train-

ing consisted of an example scenario and questionnaire for the participants to prac-

tice. There was a shorter, but similar, textual description and two questions that also

had the same structure as the questions used in the actual experiment.

As we explicitly aimed for readers with little to no programming experience, we

did not provide training on the semantics of source code. However, we provided

basic guidance on the structure of source code documents. Participants have to look

up information, which might be straightforward in natural-language text but novel

and uncommon in source code. So, we explained the role of identifiers and method

selectors and our use of color for simplification. By example, we described this

generic approach to find and connect information in code documents.

11

3 Experiment Procedure

Fig. 4. An overview of the procedure of the experiment. The upper section shows the actual run of

the study with the participants. The bottom section shows the overall process including pre-pro-

cessing of data and the data analysis.

In this section, we describe the experiment procedure. We recruited participants

through MTurk. The screening of participants and the actual experiment run was

implemented using the SurveyMonkey service. After these automated processes,

we manually filtered and analyzed the participants’ results.

3.1 Participant Management in Amazon Mechanical Turk

We posted the experiment as a task on MTurk, following guidelines for academic

requesters written by the “Dynamo MTurk Community”2. These guidelines cover

fairness and respect for participants including authenticity, privacy, payment, or

time (or work) estimate. We advertised our experiment with the keywords “study”

and “text comprehension” as follows:

2 See https://web.archive.org/web/20190115201202/http://wiki.wearedy-

namo.org/index.php/Guidelines_for_Academic_Requesters and https://web.ar-

chive.org/web/20190115201354/http://wiki.wearedynamo.org/index.php/Ba-

sics_of_how_to_be_a_good_requester)

12

“Answer questions about complex processes described in text and code (limited to

participants with little to no programming experience) (~ 90 to 120 minutes)”

The estimated duration of the experiment is provided to give participants an im-

pression of the expected time investment. We have no means to enforce this esti-

mate. The participants were reimbursed US $15 on completion of the task or a frac-

tion of this amount if they exited the task earlier. See section 2.4 for more details

on our selection criteria. Note that we excluded all participants of (prior) pilot runs

of the experiment through a project-specific MTurk qualification.

When previewing the MTurk task, participants were able to see the terms of the

experiment. Unfortunately, we do not know how many participants saw the initial

description including the reward or the preview of the terms. When they accepted

the task, they were provided a web link to the SurveyMonkey questionnaire. At that

point, our tracking of participants starts.

At the end of the SurveyMonkey questionnaire, participants got a completion

code, which they entered on the MTurk task page to submit the task and eventually

earn the reward.

3.2 Questionnaire via SurveyMonkey

We conducted the main part of the experiment through a SurveyMonkey ques-

tionnaire. We collected both complete and incomplete sets of answers because Sur-

veyMonkey records all started sessions in the same database. Such incomplete rec-

ords occur when participants exit the experiment early. They could decide to quit at

any time or be disqualified by the process automatically during the initial screening

(or skill-check) questions.

We designed the questionnaire for separate pages (for an overview see figure 4).

The first page asked general questions about gender, age, and professional back-

ground. This page also included the questions related to participants’ programming

experience. Depending on the answers, participants were automatically disqualified

(see section 2.4), for example if someone was an expert in a certain programming

paradigm. After this screening, participants received a general briefing on the struc-

ture of the questions and documents. That is, we suggested a primary reading

method for both code and text. After this briefing, there was a tutorial page for

training (see section 2.4). It contained example questions through which participants

could familiarize themselves with the types of questions used throughout the exper-

iment. This training concludes the preparation.

Participants then started with the actual experiment. At the beginning of each

questionnaire, we added weblinks to the description of the current scenario as well

as the general description on how to read (code) documents. We disguised these

weblinks to prevent participants from peeking at the scenario’s other representation,

which was code or text respectively. For example, one document was located at

“…/code-fhbdz.html” and the other at “…/text-129d.html”. Further, we used the

13

SurveyMonkey mechanisms to implement the randomized assignment to partici-

pants of (a) document types, (b) scenarios, and (c) ordering. We further used Sur-

veyMonkey to randomize the ordering of questions for each scenario as well as the

ordering of single-choice options for each question.

The questionnaire concluded with a debriefing page, which included a question

on general remarks as well as the completion code for MTurk to collect the reward.

3.3 Pre-processing the Results

As described above, we put several guards in place to ensure participant authen-

ticity and thus genuine results. However, after the experimental conduct, the data-

bases can include also records with obviously strange properties. Such records

would unnecessarily bias statistical analyses and thus our interpretations. We em-

ployed the following steps to clean those records:

• Synchronization with MTurk: For all records on SurveyMonkey, we checked

whether the provided MTurk worker identification number was listed in the list

of workers who accepted the work on MTurk. We discarded all submissions

whose identification numbers were not listed.

• Repeated submissions: We compared the IP addresses from which the sessions

on SurveyMonkey were conducted. If the same IP address showed up in two

records, we examined further for authenticity. That is, two people could share

the same Internet connection—which would be acceptable. Otherwise, we dis-

carded those submissions.

• Incomplete submissions: We discarded submissions that did not answer all

mandatory questions correctly or incorrectly. Note that there were also feedback

questions to gather qualitative data in the form of free-text fields, which were not

mandatory.

• Control questions: We discarded submissions that did not answer all control

questions correctly. We assume that such participants did not put the required

effort into the experiment.

Note that we did not enforce time constraints. However, we noticed several rec-

ords indicated low effort in terms of minutes spent. While we have no reason to

remove them from statistical analyses now, we should think about ways to increase

time spent and effort invested in follow-up studies.

4 Results and Discussion

After pre-processing the data, we analyzed the results with regard to the initial

hypothesis. To ensure that our assumptions about the background of our participants

14

were met, we determined several characteristics of our group of participants. Be-

yond the analysis of the quantitative results, we also summarized the results from

the qualitative feedback we collected. Finally, we discussed threats to the internal

and external validity of our results.

4.1 Participants’ Background and Behavior

As we used volunteer sampling, our sample is not a true random sample. Thus,

before describing the results of the comprehension tasks, we will first describe the

characteristics of the participants. As a result of the described screening of partici-

pants and pre-processing of submitted questionnaires, we ended up with results

from 31 participants. The participants are not equally distributed among groups (see

table 1). This is since many participants signed up before a single participant had

finished the questionnaire. Thus, we could not balance groups after participants

dropped out or failed control questions.

Table 1. Number of participants per experimental group.

Group A B C D

Number of participants 8 9 5 9

Regarding the programming experience of the participants, most participants

self-reported that they had never written any source code (see table 2). Three of the

five participants who reported that they wrote some code (5-1000 lines of code)

stated that they wrote small scripts to configure user interface scripting systems.

The other two participants did not state what kind of code they created.

Table 2. The number of participants who reported a certain number of lines of code they wrote in

the past.

Reported LOC 0 5 10 100 1000

Number of participants 26 1 2 1 1

Except for one, all participants either selected “disagree” or “strongly disagree”

for any of the statements about their familiarity with any of the programming para-

digms, the familiarity with the Smalltalk programming language, or their usage of

formal methods. One participant selected “neither agree nor disagree” for two of

these questions.

15

Fig. 5. Histogram of the time spent on the questionnaire excluding an outlier of 22h due to tech-

nical difficulties of the participant. Each compartment spans an interval of 15 minutes.

Finally, we determined the time spent on the questionnaire by taking the differ-

ence between the time the SurveyMonkey session was started and the submission

of the last page of the questionnaire (see figure 5). Most participants spent 24 to 39

minutes on the questionnaire. Generally, most participants stayed under 99 minutes

in total (excluding one participant whose recorded time was 22 hours and 58

minutes which was due to a technical issue on the side of the participant). As we

intended participants to spent between 60 and 120 minutes on the task, the time

participants actually spent on the task was lower than we intended.

4.2 Analysis of Quantitative Results

The primary goal of the experiment was to determine whether the format of the

document influenced comprehensibility (see figure 7 for an overview of the results).

As we employed a within-subject design, we used a paired t-test for comparing the

results. Therefore, we determined the mean of the differences between the scores

for the Smalltalk and the English language document of each participant (see figure

6).

16

Fig. 6. A box plot of the distribution of the score differences for each subject between the code

and the text document.

The differences were normally distributed, as assessed by the Shapiro-Wilk's test

(p = 0.197). The mean difference is -1.42 (standard deviation 1.747) and the differ-

ence between the scores is significantly different from zero (t31=4.524, p <0.001).

This difference means that on average participants scored fewer points on question-

naires about a Smalltalk document than they did on questionnaires about a text doc-

ument.

Fig. 7. Individual results for each participant between the questions answered on code and the

questions answered on a text document. The two diagrams show the results for the respective

combinations of document formats and scenarios (re = registration process, co = shop checkout).

Further, we designed the scenarios and the corresponding questionnaires to be of

equal difficulty, to prevent any differences in difficulty from potentially influencing

the results. To check this assumption, we also analyzed the difference between the

scores for the conference registration and the shop checkout scenario. Again, the

differences were normally distributed, as assessed by Shapiro-Wilk's test (p =

0.356). The mean difference between the two scenarios is not significantly different

from zero (t31=1.656; p = 0.108).

17

At the same time, the plots of the two groups show that the groups do in fact

differ. For example, the group that worked on the registration process expressed in

code had a lower minimum score for the code task and a lower maximum score for

the text ask. Further, this group had two outliers who performed better on the code

document than on the text document.

Despite the statistically significant results, the results should be regarded as pre-

liminary. A detailed analysis of variance would be required to clarify the influence

of the scenarios onto the results. Additionally, the current analysis does not cover

the influence from the time spent on the questionnaire, the ordering of scenarios, or

any interactions between these variables.

4.3 Summary of Qualitative Feedback

Following the completion of each questionnaire about a scenario, we asked par-

ticipants to describe any difficulties they encountered when working with the doc-

uments. We did not apply a rigorous analysis to the data but summarized some of

the themes in the responses below. As the participants wrote these statements after

they finished all questions on one scenario, the statements do not allow for any con-

clusions on the actual difficulties the participants encountered. Nevertheless, they

can serve as a starting point for future programming language features or experi-

ment setups.

One topic which was primarily mentioned with regard to working with code doc-

uments was that participants felt that some statements in the code lacked relevant

context. One participant stated this quite explicitly:

“[…] the apparent answer to the previously stated issue appears later in this code block,

but not in direct proximity to it, which may result in transient confusion.”

The confusion was related to the meaning of the value of a variable in the con-

ference registration process. Although the value of the variable was “#registered”

the meaning of the value with regard to the registration process was unclear until

the value was used later on to notify users that they were successfully registered.

Another participant stated that they were unsure about the definition of a certain

group of conference visitors:

“[…] I also didn’t understand if people who wanted to participate in the conference were

also counted as going to the workshop and if that limit therefore applied to them (the 100

people limit). So, this line was challenging: ‘self numberOfWorkshopParticipants >= self

limitOfWorkshopParticipants’ […]”

In order to understand the quoted code statement, one would have to look up the

definition of the two identifiers “numberOfWorkshopParticipants” and “limi-

tOfWorkshopParticipants”. Both identifiers were defined in the code but in a dif-

ferent section of the code document. Again, the spatial distance between the state-

ment and the corresponding detailed definitions might have caused the confusion.

18

A second topic with regard to the code documents was difficulties with technical

vocabulary or syntax. While we intended to keep the code free from any unneces-

sary technical details, some details remained in the code. Some of these were men-

tioned as confusing or completely obscure:

“[…] I did not understand what this meant: notNil so I could not interpret that code line at

all. […]”

The “notNil” statement was also mentioned by other participants. However, only

the quoted participant stated that this was a hindrance to understanding the sur-

rounding line. Others simply noted that they were not sure what it meant. Another

technical aspect of the code that was mentioned was the hash character, which is

the syntax for denoting a symbol in Smalltalk (a piece of text with a unique object

identity). An example in the source code is the symbol “#registered”. This syntax

was mentioned by one participant who quoted a section of code and stated that they

were unsure about the meaning of the hash character:

“[…] ‘ifFalse: [| resultStatus |”

 resultStatus := #registered’but I don’t understand what the # means. […]”

Notably, these two were the only technical aspects mentioned although the code

did include a variety of technical vocabulary and syntax, such as the method name

“->”, square brackets, or curly braces.

Besides these topics primarily related to the code documents, one interesting

theme with regard to the text documents was that participants would have preferred

a different layout or representation of the text:

 “It was hard to apply the information in paragraph format. I had to break it down line by

line. […]”

“The challenge, for me, is that the information wasn’t broken up into paragraphs or bullet

points.”

One participant even went so far as to suggested that a graphical representation

of the process logic might help with understanding the underlying structure.

“[…] I think in terms of my understanding and answering, some sort of flow chart or

similar graphic might be the most useful. This would allow you to sort registrants

methodically step by step based on attributes like local/visiting, code/no code, workshop-

only/full […]”

4.4 Threats to Validity

While we consider the results of the analysis preliminary, we also want to point

out the particular threats to the internal and external validity we identified with the

current setup.

One internal threat is the fact that a large number of participants spend less than

the intended time on the questionnaires. As the scenarios are complex and we can

assume that the questions require concentration, spending less than 30 minutes on

19

the tasks suggests that participants did not fully engage in the tasks. This matches

the feedback on the overall study of one participant, who said: “I expected this to

be a lot longer study. I would possibly include a progress bar […]”. Overall this

might mean that we did not measure how well the documents might be compre-

hended but how well they might be skimmed or how quickly readers could find

information relevant to a question.

Another internal threat results from conducting the experiment on MTurk. As

we have no way to control the activities of participants while participating in the

experiment, participants might have used external data sources for understanding

the Smalltalk code, for example by searching for the meaning of method selectors.

While we cannot control for it in general, future designs should incorporate a ques-

tion at the end of the experiment as to whether participants used any information

not contained in the experiment material.

As mentioned in the analysis of the questionnaire scores, the comparability of

the difficulty of tasks might still be a challenge and thus be an internal threat. Ad-

ditional analysis is required to determine the differences resulting from the scenar-

ios. If the analysis shows that their difficulty differs, future designs will have to

balance them better.

Despite two pilot runs, overlooked technical details in the scenario descriptions,

such as the message “notNil” (see section 4.3), might have confused participants

unintentionally and thus be another internal threat.

An external threat is the limitation of features of the Smalltalk programming

language we used in the code documents. While Smalltalk code generally contains

only few explicit loops, these might be necessary for some domain logic. At the

same time, one could argue that if the domain logic does require an explicit loop,

the complexity introduced by the loop was inherent to the domain. Beyond these

situations, performance optimizations might require programmers to use more ad-

vanced language features in a code document.

Further, the minimal training on the semantics of source code might be unrealis-

tic in practice and thus be an external threat. In situations in which domain experts

regularly interact with programmers, one might argue that domain experts would

quickly become proficient in the programming language.

5 Related Work

As the readability of source code affects not only source code as a communica-

tion medium but also the accessibility of source code for programming novices and

the productivity of professional programmers, related work covers a variety of top-

ics.

For example, a systematic series of controlled experiments showed that the dif-

ferent programming language syntax of existing programming languages has an im-

pact on the accuracy of readers with no or little programming experience

[Stefik2013]. The studies used a limited set of features, based on the set of features

20

programming novices would first encounter when learning to program. The results

of these studies were further used to inform the design of parts of the Quorum pro-

gramming language.

Another study set out to investigate the impact of a domain-specific language on

the performance of programmers [Ingibergsson2018]. The experiment design par-

ticularly targeted programming with a domain-specific language. The participants

were all programmers who had some experience with the C++ programming lan-

guage. While the results were inconclusive, the insights for designing code reada-

bility experiment could be used in future iterations of our setup.

Besides studies on the effect of textual languages, some studies examined the

differences between textual and graphical representations of code. For example, one

study investigated the impact of a textual and a graphical notation for regular ex-

pressions for readers with programming experience [Hollmann2017]. Regular ex-

pressions are a domain-specific language regularly used by programmers for pattern

matching, for example in text segments. The study found that readers could answer

questions on the expressions faster when working with the graphical notation.

Finally, a more general, related argument comes from literature on end-user pro-

gramming [Nardi1993]. While programming languages are formal languages, stud-

ies on end-user programming suggest that the formal nature of code does not have

to be an obstacle for understanding code documents. People regularly use formal

languages in their everyday life without recognizing them as such. Examples for

such languages are calculating sports statistics or sewing or knitting patterns. While

the underlying languages are formal, they are not perceived by their users as such

because they are primarily specific to a task that is familiar to its users.
Finally, a recent study suggests that the differences between code documents and

text documents might become less distinct for experienced programmers

[Floyd2017]. The study investigated whether the brain activity while reading source

code is more similar to reading mathematical texts or to reading prose. While the

results are preliminary, they indicate that with higher expertise in programming, the

brain activity seems to become more similar to reading prose.

6 Summary and Conclusions

In the described study we set out to gather initial empirical evidence on the as-

sumption that even domain-specific, object-oriented source code is insufficient to

express domain logic in a way accessible to readers with little to no programming

experience at all. Therefore, we devised a design for a controlled experiment

through Amazon Mechanical Turk comparing the comprehensibility of documents

about domain processes expressed in either Smalltalk source code or the English

language. A first run of the experiment design resulted in data from 31 participants.

Despite having no or very little programming experience, most participants were

still able to answer several of questions based on the code documents. Nevertheless,

21

the data provides statistically significant results showing that code is less compre-

hensible. However, this result should be regarded as preliminary as further post-hoc

data analysis and more experiments are still required to clarify the influence of a

potential difference in the difficulty of the scenarios.

The current experiment already hints that general-purpose programming lan-

guages might not yet be accessible enough. Beyond this, the described experiment

setup could now be used for further experiments investigating how particular fea-

tures of the code document or the natural language documents make the described

domain knowledge accessible or not. These insights could then be used to design

better languages and tools to make source code a useful artifact in the everyday

communication between domain experts and programmers.

References

[Goldberg1983] A. Goldberg and D. Robson, Smalltalk-80: The language and its implementation.

Addison-Wesley Longman Publishing Co., Inc., 1983.

[Robson2002] C. Robson, Real world research. 2nd edition. Blackwell Publishing, 2002

[Robins2003] A. V. Robins, Janet Rountree, and Nathan Rountree, Learning and teaching pro-

gramming: a review and discussion. Computer Science Education 13, 2, 2003.

[Wegner1987] P. Wegner. Dimensions of object-based language design. In Proceedings of the

International Conference on Object-oriented Programming, Systems, Languages & Applica-

tions, pages 168–182, ACM, 1987.

[Beck1996] K. Beck, Smalltalk best practice patterns. Prentice Hall, 1996.

[Raymond2010] R. P. L. Buse and W. R. Weimer. Learning a Metric for Code Readability. IEEE

Transactions on Software Engineering 36, 4. IEEE, 2010,

[Stefik2013] A. Stefik and S. Siebert. An Empirical Investigation into Programming Language

Syntax. Transactions on Computer Education 13, 4. IEEE, 2013

[Hollmann2017] N. Hollmann and S. Hanenberg. An Empirical Study on the Readability of Reg-

ular Expressions: Textual Versus Graphical. Proceedings of the IEEE Working Conference on

Software Visualization (VISSOFT), 2017 IEEE Working Conference on. IEEE, 2017.

[Ingibergsson2018] J. T. Mogensen Ingibergson, S. Hanenberg, J. Sunshine, U.P. Schultz. Expe-

rience report: studying the readability of a domain specific language. Proceedings of the 33rd

Annual ACM Symposium on Applied Computing. ACM, 2018.

[Nardi1993] Bonnie A. Nardi, A small matter of programming: perspectives on end user compu-

ting. MIT press, 1993.

[Floyd2017] B. Floyd, T. Santander, and W. Weimer. Decoding the representation of code in the

brain: An fMRI study of code review and expertise. Proceedings of the 39th International Con-

ference on Software Engineering. IEEE Press, 2017.

[Evans2004] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.

Addison-Wesley Professional, 2004.

[Abelson1996] H. Abelson, G. J. Sussman, and J. Sussman. Structure and interpretation of com-

puter programs. Justin Kelly, 1996.

