Towards a Theory of Factors That Influence Text
Comprehension of Code Documents

Patrick Rein and Marcel Taeumel and Robert Hirschfeld

Abstract The design of domain-specific software systems can benefit from partic-
ipatory design practices making domain experts and programmers equal, collabo-
rating partners. The source code of such a system might be a viable communication
artifact to mediate the perspectives of the two groups. However, source code writ-
ten in a general-purpose programming language is often considered too difficult to
comprehend for untrained readers. At the same time, it is yet unclear what makes
general-purpose programming languages difficult to understand. Based on our previ-
ous study and related work from programming pedagogy and cognitive psychology,
we develop an initial theory of factors that might influence the comprehensibility of
source code documents by untrained readers. This theory covers factors stemming
from the features of source code, factors related to the visual appearance of source
code, and factors concerned with aspects independent of code documents. This chap-
ter discusses and illustrates these potential factors and points out initial hypotheses
about how these factors can influence comprehensibility.

1 Motivation: Code Documents for Participatory Design

Software can generate value in many domains whose experts are not necessarily
programmers themselves. Thus, the evolution of software in domain-specific projects
leads to a collaboration of domain experts and programmers. This is particularly
important for software systems which are highly domain-specific, for example payroll

Patrick Rein
Hasso Platter Institute, 14482 Potsdam, Germany, e-mail: patrick.rein@hpi.uni-potsdam.de

Marcel Taeumel
Hasso Platter Institute, 14482 Potsdam, Germany, e-mail: marcel.tacumel @hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Platter Institute, 14482 Potsdam, Germany, e-mail: robert.hirschfeld @hpi.uni-potsdam.de

Robert Hirschfeld
In Christoph Meinel and Larry Leifer (eds.).
Design Thinking Research: Interrogating the Doing (pages 307-325)
Springer 2020 (doi:10.1007/978-3-030-62037-0_14)

2 Patrick Rein and Marcel Taecumel and Robert Hirschfeld

accounting systems, or geographic information systems. Participatory design can
serve as a framework for the collaboration between domain experts and programmers
as it regards them as equal partners in the design of the software system [1].

Participatory design emphasizes mutuality, reciprocity, and mutual learning. In
the described situation of domain-specific software development, experts can learn
technical possibilities and constraints from programmers with regard to the software
to be created. Programmers can learn from the domain experts the inner workings
of the domain, its vocabulary, and its constraints. Eventually, such a collaboration
of groups from both areas of expertise can yield the creation of something more
valuable than the sum of its individual contributions (see figure 1) [1, 16, 19].

To facilitate the participatory design process, teams use various practices such
as playing out situations in dramas, collaborative game design, and mock-ups. Part
of the purpose of these practices is the creation of concrete artifacts representing
a shared language between the different groups participating in the design process.
These artifacts should improve the mutual understanding of each others perspectives
and needs, while creating a sense of shared ownership of the language [16, 8]

We argue that the source code of a software system has the potential to serve as
a useful concrete artifact representing a shared language in a team of programmers
and domain experts [19]. First of all, source code explicitly expresses all domain
knowledge relevant for the behavior of the system. Further, source code can be open
to different interpretations. For domain experts it can serve as a written out formal
model of domain knowledge. The exact execution semantics of the code might not
matter much, as long as the meaning of the domain knowledge is sufficiently clear.
At the same time, for programmers source code serves as a static description of the
dynamic behavior of a computer. It describes the mapping from domain knowledge
to technical infrastructure such as user interface components, or hardware input and
output. Bringing these two perspectives together is a major challenge for software
development, therefore source code, which combines these two perspectives, is an
interesting artifact for participatory design.

1.1 The Challenges of Code as a Communication Artifact

Formal descriptions of the behavior of software systems have previously been
proposed and have been used in participatory design in software development
teams [13, 3, 9, 14]. However, multidisciplinary teams use descriptions containing
specialized representations, such as diagrams or domain-specific languages (DSL)
instead of the actual source code. This makes the described behavior more accessible
to the domain experts. At the same time, these specialized representations require
extra effort as they increase the distance between the domain experts and the actual
system description in source code. This distance has to be bridged either by devel-
opers mapping these descriptions to actual code or by additional infrastructure and
tools which have to be maintained (for example a DSL compiler and a corresponding
debugger). In contrast to that, the actual source code of the system is always avail-

Towards a Theory of Factors That Influence Text Comprehension of Code Documents 3

able. Further, changes to the source code are directly executable and no additional
infrastructure has to be maintained.

How can program source code be used as a frequent communication artifact
when exploring (or discussing) domain-specific terms and rules, which can
also be expressed as natural-language text?

While source code written in a general-purpose programming language is readily
available as a communication artifact, it is currently often regarded as difficult to
understand for non-trained readers. Many of the mentioned formalism designed to
be accessible for non-programming readers are motivated by this assumption. In a
previous study, we investigated whether this assumption holds for object-oriented
programs in a domain with simple rules [19].

The results of our text comprehension study showed that inexperienced readers
performed worse on a process description expressed in object-oriented code than
they performed on the English text variant. At the same time, the effect size in
our experiment was rather small. As this was only a first study on the topic, final
conclusions cannot be drawn. However the small effect size is still surprising as
one would expect a formal document format such as source code to be generally
difficult for inexperienced readers to read. Based on previous work, we again see that
the mere fact that code documents are written in a language with formal semantics
does not directly result in incomprehensible documents [17]. Other features of code
seem to influence the comprehensibility of source code. Thus, our refined research
question is:

Which features of code documents make them more “difficult” to understand
than English texts for readers with little to no programming experience?

A detailed understanding of what actually makes code “difficult” to understand
could help designers of future languages in targeting non-programming readers to
make conscious design choices for or against language features. Existing observations
of difficulties faced by novice programmers are not sufficient in this regard, as novice
programmers aim to learn to program while our target group might not necessarily
intend to do so.

1.2 Overview of the Theory and a First Example

In order to investigate the obstacles to understanding code documents written in
general-purpose programming languages, we describe an initial set of factors that
potentially influence how well readers can comprehend the content of these docu-
ments. Thereby, we aim to create a theory of which features of source code, used

4 Patrick Rein and Marcel Taecumel and Robert Hirschfeld

to express dynamic processes, are difficult for readers with no programming back-
ground to understand.

We argue that existing theories on program comprehension do not apply as they
are mostly concerned with the comprehension process of trained programmers [23].
Further, even theories from programming pedagogy can only be applied to a lim-
ited extent, as they mostly deal with learners specifically trying to learn how to
program [20]. In contrast, we investigate situations in which readers have no prior
experience and in which readers do not intend to learn programming. Further, we
take inspiration from cognitive psychology research results on the process of read-
ing [18]. Our theory, however, focuses on the results of that process and does not
try to contribute to the existing theories of the cognitive processes happening during
text or program comprehension.

When untrained readers encounter a source code document, they face content
presented in an unfamiliar form (for an example see listing 1). In order to try to
understand the content, they have to overcome several “obstacles” at different levels:
from strange formatting, to alien vocabulary, and unfamiliar semantics.

The underlying challenge is the representation of domain knowledge through
programming languages. For untrained readers, the document is, in fact, written
in an unknown language. The language might include English vocabulary, but the
grammar and semantics of the language are different from the grammar and the
semantics of natural languages. We, argue that this can be somewhat mitigated by
programming languages as long as the grammar and semantics are similar to the
grammar and semantics of natural languages. Readers can then use their knowledge
of natural languages to try to understand the source code. However, even with
a completely familiar grammar and semantics, source code remains a means for
expressing technical knowledge. Thus, the domain knowledge might be encoded in
technical descriptions or the description of domain knowledge might be mingled
with technical vocabulary. Both make it more difficult for readers to find relevant
domain knowledge. We describe these factors, all resulting directly from the features
of source code, in section 2.

While the described features are inherent to source code, untrained readers might
not notice them at first but will first notice that source code also looks different
from natural language text. Due to its inner structure, source code is formatted and
styled differently. For example, indentation is often used to visualize the underlying
structure of phrases in programming languages. This can result in source code
documents in which no two consecutive lines have the same indentation. We describe
the factors concerning the visual appearance of source code in section 3.

Finally, the comprehensibility of a document is not a property of the document it-
self but of a particular document and a particular reader. The background and attitude
of readers with regard to formal languages might influence the comprehensibility.
For example, readers familiar with complex sets of production rules, for example
chemical reaction formulas, might have less difficulty when trying to understand a
program written in a rule-based logic programming language. We discuss factors
that are independent off a particular code document in section 4.

Towards a Theory of Factors That Influence Text Comprehension of Code Documents 5

The resulting list of factors is by no means complete but serves as a starting
point to generate initial hypotheses to test. We expect that new factors will come up
during testing the initial hypotheses and that some of the initial factors will turn out
to be irrelevant. Our initial list of factors is informed by related work on program
comprehension, programming pedagogy, results of cognitive psychology research
on reading, and the qualitative results of our previous study.

Before explaining each group, we will give an overview of how these groups
relate to each other. We will also introduce a running example, which we will use
to illustrate the different levels of factors whenever suitable. The example shows
how a step in a conference registration process is described in source code of the
programming language Smalltalk [10].

Running Example

The following example is one step in the registration process of a commercially used

conference registration system one of the authors worked on. Both excerpts are from

the material we used in the experiments to test some of the initial hypotheses [19].
The English text version of the process step reads as following:

Fifth, the participant will select the workshop they want to attend. Therefore, the system first
determines all workshops available for the participant to attend. A workshop is available if
it has capacity left and if the workshop is open for the participant type of the participant.
[...] The system asks the user to select a workshop from the set of available workshops.

This text describes the interactions between a user, called “the participant,” and
the registration system. The workshop registration step is only one of several steps in
the registration process. The longer text from which this excerpt is taken also defines
the relevant concepts such as participants, the conference, and why the workshop
registration matters to the overall process. The ellipsis in the middle of the excerpt
includes rules describing what defines whether a workshop has capacity left and
whether a workshop is open for particular types of participants. These rules are
omitted as they are also omitted in the source code excerpt below. This does not
mean that the description in source code does not express these rules, but that they
are not expressed in the excerpt used.

Now, compare the textual description above to the following excerpt in listing 1
describing the same process step in the Smalltalk programming language [10].

Listing 1 The example process step expressed in the Smalltalk programming language. The process
step is expressed in a method called processStepFiveSelectWorkshop.

i ConferenceRegistrationProcess>>processStepFiveSelectWorkshop

| availableWorkshops |
4+ availableWorkshops := self allWorkshops select: [:workshop |
workshop hasCapacityleft and: [
6 workshop canBeAttendedBy: participant]].

6 Patrick Rein and Marcel Taecumel and Robert Hirschfeld

s participant setSelectedWorkshopTo: (
9 self askUserToChooseWorkshopFrom: availableWorkshops).

We will briefly outline what some of the elements mean and how they map to the
description in the English text. The first line tells us that we are looking at the class
ConferenceRegistrationProcess and at the method processStepFiveSelectWorkshop
. For the discussion of factors, it is sufficient to know that classes are collections
of methods and methods include code. Further, when explaining the code, we will
sometimes refer to statements. As a heuristic, statements in programming languages
are what sentences are in natural languages. Line 4 to 6 are a statement that describes
the rules defining which workshops are available. To get the list of all available
workshops, we go through allWorkshops and select each one that hasCapacityLeft

and canBeAttendedBy the participant. Finally, we say that we set the selected
workshop property of the participant to the result of asking the user to choose a
workshop from the availableWorkshops.

2 Factors Resulting from the Features of Source Code

By its very nature, source code is expressed in a formally defined language, such
as the Smalltalk programming language [10]. This alone might already explain why
source code is difficult to comprehend to untrained readers: source code is written in a
language they do not know. The meaning of a source code document depends largely
on the semantics of the programming language, which is unknown to untrained
readers, thus preventing them from comprehending the document. However, as our
initial experiment has shown, even readers completely unfamiliar with programming
can still comprehend large parts of a source code documents. So, missing knowledge
about the underlying semantics of the programming language does not make source
code completely incomprehensible but only hampers comprehension to some degree.

Further, our past experiment implies that other features of source code are also
relevant. In a debriefing questionnaire, we asked for specific difficulties readers
encountered. Besides general expressions of uncertainty with regard to the meaning
of the document, participants mentioned specific aspects such as particular syntactic
elements, as well as technical vocabulary such as “nil”.

Therefore, we shall take a closer look at features of source code documents
that might influence comprehensibility. We identified four potential sources of dif-
ficulty: discoverability of grammar, familiarity of semantics, decomposition versus
linearization, and representation of domain knowledge.

10

Towards a Theory of Factors That Influence Text Comprehension of Code Documents 7

2.1 Discoverability of Grammar

The grammar of a programming language, just like the grammar of a natural lan-
guage, determines which sequences of characters are valid phrases in the language
and what role a word plays in a phrase. We argue that the discoverability of grammati-
cal rules could potentially influence the comprehensibility of source code documents
for untrained readers. In detail, we argue that the discoverability is determined by
the familiarity or explicitness of symbols denoting special grammatical structures in
code.

For programming languages, the strict adherence to the grammar is important,
as the grammar is later used to determine how the code should be executed. The
grammar of natural languages has a similar role. Research on the process of reading
shows that one part of understanding the meaning of a natural language sentence
is to associate individual words with their grammatical roles, such as subject and
verb [18]. Assuming that untrained readers try to apply a similar process of reading
to source code, readers would also try to use a grammar to assign roles to words in
source code. However, the grammar of programming languages might be completely
unfamiliar to them.

In addition to the above, the role of words or phrases in programming languages
is often denoted by special symbols. These symbols can be whole words or special
characters, among them punctuation characters. In our example above, the bars
(““l ... I”) mark the beginning and the end of a list of temporary variables, in our case a
list with only one variable called “availableWorkshops”. The usage of special words
and symbols in programming language grammars can be located along a spectrum
ranging from using only explicit words to using unfamiliar special characters.

The implicit meaning of special characters in general might make the grammar
less discoverable. Thus, some programming languages avoid punctuation characters
and use words instead, for example the language AppleScript [7]. We expect such
explicit representations of the syntax to be more discoverable and in turn easier to
comprehend than implicit representations. In listing 2, we can see the difference
between the two approaches by replacing some punctuation characters with explicit
descriptions of what parts of the code mean:

Listing 2 A variant of the example method rewritten according to a grammar that makes the
grammatical roles of elements more explicit.

ConferenceRegistrationProcess>>processStepFiveSelectWorkshop

temporary variables: availableWorkshops.
set availableWorkshops to self allWorkshops select: do
arguments: workshop
workshop hasCapacityLeft and: [
workshop canBeAttendedBy: participant]
end.

participant setSelectedWorkshopTo: (
self askUserToChooseWorkshopFrom: availableWorkshops).

8 Patrick Rein and Marcel Taecumel and Robert Hirschfeld

Somewhere between these two extremes is another option which is to use punc-
tuation characters from natural language. These punctuation characters are used
to denote something similar to what they indicate in natural language. The pro-
gramming language Smalltalk, as many other programming languages, uses special
characters in this way. In our example above, we can see that the period is used
to separate statements just as the period separates sentences from one another in
natural language. We assume that this improves accessibility, as untrained readers
can use their familiar understanding of punctuation characters. In contrast, if we
use unfamiliar special characters or common punctuation characters in unfamiliar
ways, the grammar would become less discoverable and thus the document less
comprehensible. If we replace these characters with unusual ones, we would expect
the document to become less comprehensible for untrained readers, as can be seen
in listing 3.

Listing 3 A variant of the example method rewritten according to a grammar that uses unfamiliar
characters to denote grammatical roles.

ConferenceRegistrationProcess>>processStepFiveSelectWorkshop

/ availableWorkshops /
<availableWorkshops <- self:allWorkshops:select->[:workshop /
workshop:hasCapacityLeft:and->[
workshop:canBeAttendedBy->participant]]>

<participant:setSelectedWorkshopTo->(
self:askUserToChooseWorkshopFrom->availableWorkshops)>

2.2 Familiarity of Semantics

The meaning of a statement in a programming language is formally defined by
what happens in the computer when that statement is executed. So, in order to fully
understand what a given statement in a programming language means, one needs
to know the complete set of evaluation rules for that language. These evaluation
rules are called the semantics of the programming language. We assume that two
dimensions might influence the text comprehension for untrained readers: similarity
of semantics to common sense, and number and combinations of evaluation rules
used.

The first aspect is again grounded in the process of reading [18]. In order to un-
derstand a sentence, readers of natural text first assign grammatical roles to words,
then combine words into phrases structures, and finally combine these phrase struc-
tures into sentence structures! [18]. The grammar of the language and the lexical
information for each word provide the information on the relation between the words

! This is a simplified depiction of the full version of one of the theories on the process of reading.
Four our argument this part of the theory is sufficient.

Towards a Theory of Factors That Influence Text Comprehension of Code Documents 9

in the sentence. These relations are then interpreted through the readers knowledge
about the world.

For source code documents, untrained readers do not have any knowledge of
the evaluation rules and thereby about the actual relations between words in the
document. In order to still be able to understand the meaning of statements in the
document, they might heuristically use their natural language grammar and lexical
information. This in turn would mean that evaluation rules which are similar to
common sense should make a document more accessible. Statements which make
use of evaluation rules which are close to common sense could then be understood
just like natural language text. For example, for native English speakers, time should
flow from top to bottom through the document, or names that have been defined at
some point should be available from there on.

The following example snippet illustrates the spectrum between what might be
regarded as common sense and what is special to programming language semantics.

availableWorkshops := self allWorkshops select: [:workshop |
workshop isAvailable].
lastWorkshop := workshop.

In this snippet the execution of statements happens from top to bottom, so
time flows in the reading direction. After executing the first statement, the vari-
able availableWorkshops contains all workshops which are currently available. We
can use the variable availableWorkshops from now on. At the same time, the usage
of the variable workshop in the assignment to lastWorkshop is not possible, as the
name “workshop” is only valid within the block denoted by square brackets (“[...]”).
However, for an untrained reader the name was used beforehand in this snippet so
it seems plausible to assume that it could be used further down. Consistently inter-
preting the scopes in which a name is valid is a task which can also be challenging
for programmers when they do not know the programming language [24].

Beyond the familiarity of the used evaluation rules, the number and combinations
of rules used in a document might also influence the text comprehension.

2.3 Decomposed versus Linearized

The way source code documents are structured is fundamentally different from how
most natural language texts are structured. Natural language text is mostly written for
reading it linearly. In contrast to that, source code is decomposed into many small
elements which are referenced from many different locations within the source code,
similar to the way an encyclopedia is structured. We argue that this fundamental
difference is a main obstacle for untrained readers who are used to consuming text
in a linear fashion, from the beginning of the text to the end. In order to understand
code, it has to be read by jumping from one element of the source code to another.
Code is decomposed to improve the maintainability of source code. The goal
is to try to avoid any duplication so that every relevant domain concept is only

10

10 Patrick Rein and Marcel Taecumel and Robert Hirschfeld

expressed once within the document. A the same time, the code also might become
less accessible for untrained readers. This is also indicated by related work on
programming pedagogy? [20].

For example, to answer any questions about concrete scenarios based on our
original example method, readers would need to look up further information first.
The method processStepFiveSelectWorkshop describes the general steps to get the
available workshops, but intentionally leaves out several details. To answer questions
on whether one specific participant would be able to select a specific workshop,
readers would need to know how canBeAttendedBy: is actually defined. To learn
about its definition, they would have to scan the document and look for the definition
of canBeAttendedBy: and read that definition.

Assuming that a linear version of our example would be more accessible, we
could directly include the definitions of all other relevant methods directly within
our example method. The resulting code might look similar to listing 4.

Listing 4 A linearized variant of the example method that includes the definitions of relevant other
methods.

ConferenceRegistrationProcess>>processStepFiveSelectWorkshop

| availableWorkshops |

availableWorkshops := self allWorkshops select: [:workshop |
workshop isUniversityWorkshop ifTrue: [capacity := 15].
workshop isCompanyWorkshop ifTrue: [capacity := 20].
workshopHasCapacityLeft := workshop attendance < capacity.
workshopCanBeAttendedByParticipant := workshop

isCompanyWorkshop or: [

workshop isUniversityWorkshop and: [participant
isLocalStudent]].
workshopHasCapacityLeft and: [
workshopCanBeAttendedByParticipant]].

participant setSelectedWorkshopTo: (
self askUserToChooseWorkshopFrom: availableWorkshops).

Now, when answering questions about which participant can attend which
workshop, readers do not have to refer to other methods. The phrases workshop
hasCapacityLeft and workshop canBeAttendedBy: participant have been expanded
with their definitions (see line 5 to 7 and line 8 to 9).

2.4 Representation of Domain Knowledge

Code always expresses the domain knowledge of the application domain in some
way. At the same time, source code is also primarily a means to describe the behavior

2 For example, a survey on studies on how to teach and learn programming found that object-
oriented programming was difficult for novices because the program text was distributed across
many small elements. [20]

Towards a Theory of Factors That Influence Text Comprehension of Code Documents 11

of a technical machine. Thus, source code necessarily intertwines the two aspects.
We argue that two dimensions of this relationship have an influence on the compre-
hensibility of code: how explicit the domain knowledge is expressed and the relative
proportion of technical and domain vocabulary in the document.

The first dimension influences comprehension as it determines how much the
source code expresses logic of the domain versus how much does it express the
underlying operations of the computer. To create a software system, programmers
inevitably have to map the domain knowledge to underlying operations of the exe-
cution environment at one point. At the same time, programming languages allow
programmers to abstract from these underlying operations, for example by putting
them in a separate method and giving the method a name which reflects the domain
logic expressed through these underlying operations. We can then use this method
wherever that domain logic is needed. Readers encountering the method name can
understand what happens in terms of the domain and do not have to know which
primitive operations are executed in the computer.

Listing 5 illustrates how a version of our example method would look like with
a somewhat less explicit description of the rules to determine which workshops
are available. First of all, the explicit method hasCapacityLeft was removed as the
method name describes knowledge of the domain. Second, the code expressing that
we select specific workshops was replaced by a loop which iterates over the offsets
in a primitive collection of numbers (line 5). The offset, called workshopIndex is
used to look up the type of the workshop with that number in the mapping called
workshopTypes. The type of the workshop itself is represented as a number which we
compare to some known numbers (line 7 and 10).

Listing 5 A variant of the example method which represents domain knowledge through underyling
data structures and operations, thereby making the expression of domain knowledge less explicit.

ConferenceRegistrationProcess>>processStepFiveSelectWorkshop

| workshopsAvailable isCapacitylLeft |

workshopsAvailable := Array new: self typesOfWorkshops size.
self workshopTypes indexDo: [:workshopIndex |
isCapacitylLeft := false.
(self workshopTypes at: workshopIndex) = 1 ifTrue: [
isCapacitylLeft := (self

workshopAttendances at: workshopIndex) < 15].
(self workshopTypes at: workshopIndex) = 2 ifTrue: [
isCapacityLeft := (self
workshopAttendances at: workshopIndex) < 20].
(isCapacityLeft and: [self workshop: workshopIndex
canBeAttendedBy: self participant]) ifTrue: [
workshopsAvailable at: workshopIndex put: 1].

participant setSelectedWorkshopTo: (
self askUserToChooseWorkshopFrom: workshopsAvailable).

The overall structure looks similar to listing 4. However, while listing 4 still has
method names which reflect knowledge about the name such as i sUniversityWorkshop

12 Patrick Rein and Marcel Taecumel and Robert Hirschfeld

, the code in listing 5 does not contain any method names with that vocabulary
anymore.

However, making as much of the domain knowledge explicit and hiding all under-
lying operations might not be a guarantee for creating comprehensible source code.
The domain logic could still be mixed with logic concerned with technical infras-
tructure such as maintaining data structure or handling in- and output mechanisms
such as user interface interactions. We assume that the more technical logic and
vocabulary is intermixed with the domain logic, the less comprehensible the source
code becomes. One argument for that is that the domain logic becomes less dense.
Non-technical readers have to filter the technical details as noise to get to the actual
domain knowledge in the document.

For example, listing 6 shows how our example method would look like if more
technical logic was introduced. The most prominent part is visible at the bottom.
The method askUserToChoosellorkshopFrom was removed and replaced with explicit
handling of the user interface interactions (lines 10 to 17). The fact that the user is
asked to choose a workshop is still expressed in these lines. However, the relevant
words and phrases are intermixed with technical code, such as the unwrapping and
converting of the result of the user interaction (lines 14 and 15).

Listing 6 A variant of the example method which includes a mixture of domain vocabulary and
technical vocabulary dealing with user interactions.

ConferenceRegistrationProcess>>processSelectWorkshop

| availableWorkshops uiRequestResult chosenWorkshopIndex |
availableWorkshops := OrderedCollection new.
self allWorkshops do: [:workshop |
(workshop hasCapacityLeft and: [
workshop canBeAttendedBy: participant]) ifTrue: [
availableWorkshops add: workshop]].

uiRequestResult := UIManager default

chooseFrom: availableWorkshops

values: availableWorkshops

title: ’Please choose a workshop’.
chosenWorkshopIndex := (uiRequestResult at: #index)

withBlanksTrimmed asNumber.

participant selectedWorkshop: (availableWorkshops

at: chosenWorkshopIndex).

As can be seen from the comparison of listings 5 and 6, the two dimensions of
how domain knowledge is represented are not completely orthogonal. When domain
knowledge is encoded implicitly in technical data structures, the source code will
necessarily contain the operations to work with these technical data structures and
thereby add noise to the representation of domain knowledge.

Towards a Theory of Factors That Influence Text Comprehension of Code Documents 13

3 Factors Related to Visual Appearance

As illustrated in the previous section, code is more structured than natural language
text. Understanding the described behavior of the system fully, requires to fully
understand that structure. Further, the decomposed form of code, forces readers to
often jump between sections in the code document. Thus, programmers often use
visual cues to help them navigate the documents or recognize the structure of a
statement more easily. In the following we will look at two aspects which determine
the visual appearance of code documents, namely the layout of the document and
the formatting and styling.

3.1 Document Layout

While typically source code is semantically decomposed into small elements, it is
still presented just as natural language text. Instead of one paragraph after another,
source code shows one semantic unit after another, such as a class, method, function,
or procedure. For example, the structure of the document containing our example
method may look like listing 7 (the content of the methods is omitted).

Listing 7 A shortened version of the source code document in which the example method is
included, illustrating how the elements within a document might be ordered. The content of the
methods is omitted.

Object subclass: #ConferenceRegistration
instanceVariableNames: ’participant’

; ConferenceRegistration startRegistration [...]

10

11

ConferenceRegistration processStepOnePersonalDetails [...]
ConferenceRegistration processStepTwoEventType [...]
ConferenceRegistration processStepThreeParticipantType [...]
ConferenceRegistration processStepFourBookings [...]
ConferenceRegistration processStepFiveSelectWorkshop [...]
ConferenceRegistration limitOfWorkshopParticipants [...]
ConferenceRegistration limitOfParticipants [...]
ConferenceRegistration numberOfRegisteredParticipants [...]

> ConferenceRegistration numberOfRegisteredBachelorStudents [...]

We argue that the ordering of the semantic elements within a document, might
influence the comprehensibility for untrained readers.

For experienced programmers, an alphabetic ordering of the elements, or a group-
ing of methods according to a unifying topic, might ease the navigation while jumping
between methods. However, for untrained readers an ordering that corresponds to
the likely navigation on first reading might be more helpful. For example, the first
method should be the most high-level method. All methods used by this high-level
method should be listed below that high-level method. After these methods, all meth-
ods used by them are listed, and so on. Note, that this assumes that readers employ
a top-down strategy when encountering the source code for the first time [23]. A

14 Patrick Rein and Marcel Taecumel and Robert Hirschfeld

reverse order might be used for the assumption that readers employ a bottom-up
strategy [23].

3.2 Formatting and Styling

The question how source code should be formatted has been discussed in the software
engineering community for more than 40 years [15]. We are more interested in the
features distinguishing code by itself regardless of its presentation. However, as
research on code presentation shows that some features can impact comprehension
levels and speed, we briefly discuss some of the common features which are: syntax
highlighting, indentation, and identifier styles.

Syntax highlighting is a technique to enrich the visual information of source code.
To achieve this, colors and text emphasis are added to parts of the source code which
have special meaning. For example, a section of our original example might look
like listing 8 with some syntax highlighting added to emphasize the methods being
sent.

Listing 8 A rendering of an excerpt from the example method with syntax highlighting emphasizing
the names of methods used in the statement.

availableWorkshops := self allWorkshops select: [:workshop |
workshop hasCapacityLeft and: [
workshop canBeAttendedBy: participant]].

Several empirical studies have investigated the effects of syntax highlighting. One
study found that for reading source code in text books, syntax highlighting does not
affect comprehension levels or speed [4]. Another study found that for novices trying
to solve program comprehension tasks on small examples, syntax highlighting does
significantly change the comprehension level [12]. While this does not imply that
syntax highlighting does not help professional programmers or novices in writing
code, it hints that the impact of syntax highlighting might be less important for
our research question on factors influencing the comprehensibility of source code
documents.

Another common question of code presentation is indentation. In all previous
listings we have used indentation of lines to show which statements belong together.
For example, all lines within the example method were indented by one space and
every statement within the square brackets of the first line were indented by at least
three spaces. Indentation is said to improve the visual perception of such groups
of statements without them it is more difficult to recognize these groups quickly.
For example, the excerpt of listing 8 would like listing 9 without indentation and
coloring:

Listing 9 A rendering of an excerpt from the example method without indentation.

| availableWorkshops := self allWorkshops select: [:workshop |

Towards a Theory of Factors That Influence Text Comprehension of Code Documents 15

> workshop hasCapacitylLeft and: [

; workshop canBeAttendedBy: participant]].

In this version it is less obvious that the second and third line contribute to the list
of available workshops in comparison to the original version. Correspondingly, one
of the few studies on the topic found that indentation does indeed influence program
comprehension [15]. The effect on comprehension levels was rather small. For
novices the effect was stronger than for professional participants. Further, participants
reported a higher subjective difficulty of comprehending the source code when
indentation was missing. Whether the impact of indentation on the comprehension
levels of untrained readers is positive or negative remains unclear. The indentation
might help discovering the hidden semantics of source code but might as well hinder
the reading process by making it visually more difficult to read linearly.

The final consideration with regard to formatting is the way names used in code
are generated. Two major styles can be distinguished in contemporary programming
languages, camel case and underscores. The following listing shows an example for
each of the two styles:

canBeAttendedBy: "camel case"
can_be_attended_by: "underscores"

Program comprehension research shows that for experienced programmers and
novices alike, there is no difference in correctness between the two styles [22, 5].
However, one eye-tracking study found that the style using underscore results in
some speed up [22]. The effect was larger for novices than it was for experienced
programmers indicating that with increased experience the influence weakens. While
a similar effect might occur with untrained readers, we are mostly interested in
comprehension levels not speed.

4 Factors Independent from the Document

With this project, we aim to improve the code documents in order to improve
comprehensibility. Thus, the factors presented so far focus on features of code
documents directly. However, we also include factors beyond the features of code
documents in our initial theory, in order to inform future experiment setups. The
first set of factors are concerned with the readers themselves. For example, beyond
the basic reading and comprehension skill of readers, their past experience with
any kind of formalism might influence how well they can deal with source code.
The second set of factors captures the influence from the application domain. For
example, a complex domain might make it even more difficult for readers to deal
with the unknown format of source code.

16 Patrick Rein and Marcel Taecumel and Robert Hirschfeld

4.1 Reader

While reading source code is different from reading natural language text, we suspect
the general reading comprehension skill to impact how well a particular reader can
comprehend the domain knowledge of a source code document.

The general comprehension skill level of readers is probably also influenced by
whether they are native speakers of the language the code document is written in.
While this seem like an obvious statement at first, this is important to remember for
source code. Most source code is written in English. Further, most programming
languages use English words as keywords. Past studies have shown that this impacts
comprehension by novice programmers [11].

While we focus on untrained readers, the past experience of readers with docu-
ment formats other than natural language text might influence how well the person
can comprehend the code document. We assume that if readers have an educational
background in a domain which makes heavy use of formal models, such as mathe-
matics or systems theory, they might struggle less with the hidden semantics of the
unknown programming language.

Beyond the general and specific comprehension skills, the general relation of
readers towards their capability to understand a particular document format might
influence the level of comprehension [2, 25].

4.2 Domain

Finally, for a given source code document, the level of comprehension a reader can
achieve also depends on the domain described in the document. Two aspects of the
domain might influence the comprehension level: the complexity of the domain and
the familiarity with the domain.

The complexity of the content of a document influences how difficult it is for a
reader to understand the document. Thus, more complex domain logic will make
any kind of document harder to understand. However, complex domain logic might
interact with the difficulty of comprehending the unknown format of source code
for untrained readers. A more complex domain might in code result in more com-
plex dynamic behavior which on top of all the aforementioned challenges adds the
requirement of being able to simulate that behavior in the readers mind. While this
might influence future experiments, it can, in general, also not be solved, as the
complexity of the domain is what we want to express in the first place [6]. Reducing
this complexity will subtract from what we initially wanted to express.

Finally, the familiarity with the domain has been shown to influence the program
comprehension strategies used by professional programmers [21]. Programmers
familiar with the application domain employ a top-down strategy to program com-
prehension, going from the high-level, domain-specific parts of the code to the more
technical ones. Programmers who were not familiar with the application domain em-
ployed a bottom-up strategy, presumably going from what they know, the low-level

Towards a Theory of Factors That Influence Text Comprehension of Code Documents 17

technical parts to the high-level, domain-specific parts. The study did not investigate
whether the familiarity of the domain influenced comprehension levels. Neverthe-
less, we would argue that, for untrained readers, the difficulty of understanding an
unfamiliar domain might interact with the difficulty of understanding the unusual
format of source code and add up to a decrease in overall comprehension.

5 Conclusion

Being able to read general-purpose source code, enables participatory design on
the level of the fundamental definitions of the domain logic of a system. Enabling
participatory design on this level is relevant in a variety of settings. For example,
general software development can benefit when teams work on applications in do-
mains with complex rules, or citizens might be able to participate in discussing how
public administration processes are defined in open-source software. However, so
far, the approach of language designers was to provide representations of domain
logic which were designed for being accessible to readers unfamiliar with source
code. However, these representations require additional effort to keep them consis-
tent with the actual source code. Consequently, we posed the research question of
how to make general-purpose source code accessible to untrained readers.

This chapter did not answer this question, but described an initial theory of what
might influence how well a reader can comprehend a source code document. In
particular, we listed features of source code which might pose a challenge, namely
the discoverability of the grammar, the familiarity of the semantics, whether code was
presented in a decomposed or a linear form, and how explicit the domain knowledge
was encoded. The theory is an initial proposal to be used to generate first hypotheses
to be tested in experiments.

A more profound version of a theory would describe why untrained readers strug-
gle with comprehending source code might help future language and tool designers.
General-purpose programming language designers might take the described obsta-
cles into consideration. Domain-specific language designers might even try to avoid
these obstacles altogether.

References

1. Asaro, P.M.: Transforming society by transforming technology: the science and politics of
participatory design. Accounting, Management and Information Technologies 10(4), 257-290
(2000)

2. Ashcraft, M.H.: Math anxiety: Personal, educational, and cognitive consequences. Current
directions in psychological science 11(5), 181-185 (2002)

3. Barrett, M., Oborn, E.: Boundary object use in cross-cultural software development teams.
Human Relations 63(8), 1199-1221 (2010)

4. Beelders, T., Plessis, J.P.: Syntax highlighting as an influencing factor when reading and
comprehending source code. Journal of Eye Movement Research 9, 2207-2219 (2016)

18

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Patrick Rein and Marcel Taecumel and Robert Hirschfeld

. Binkley, D., Davis, M., Lawrie, D., Maletic, J.I., Morrell, C., Sharif, B.: The impact of identifier

style on effort and comprehension. Empirical Software Engineering 18(2), 219-276 (2013).
DOI 10.1007/s10664-012-9201-4. URL https://doi.org/10.1007/s10664-012-9201-4

. Brooks Jr, F.P.: The mythical man-month (1995)
. Cook, W.R.: Applescript. In: Proceedings of the Third ACM SIGPLAN Conference on History

of Programming Languages, HOPL III, pp. 1-1-1-21. ACM, New York, NY, USA (2007).
DOI 10.1145/1238844.1238845. URL http://doi.acm.org/10.1145/1238844.1238845

. Ehn, P.: Work-oriented design of computer artifacts. Ph.D. thesis, Arbetslivscentrum (1988)
. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-

Wesley Professional (2004)

. Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Implementation. Addison-

Wesley Longman Publishing Co., Inc., Boston, Massachusetts, USA (1983)

. Guo, P.J.: Non-native english speakers learning computer programming: Barriers, desires, and

design opportunities. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, p. 396. ACM (2018)

Hannebauer, C., Hesenius, M., Gruhn, V.: Does syntax highlighting help programming novices?
Empirical Software Engineering 23(5), 2795-2828 (2018). DOI 10.1007/s10664-017-9579-0.
URL https://doi.org/10.1007/s10664-017-9579-0

Kensing, F., Munk-Madsen, A.: Pd: Structure in the toolbox. Communica-
tions of the ACM 36(6), 78-85 (1993). DOI 10.1145/153571.163278. URL
http://doi.acm.org/10.1145/153571.163278

Luebbe, A., Weske, M.: When Research Meets Practice: Tangible Business Process Modeling at
Work, pp. 211-229. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). DOI 10.1007/978-
3-642-31991-4_12

Miara, R.J., Musselman, J.A., Navarro, J.A., Shneiderman, B.: Program indentation and com-
prehensibility. Communications of the ACM 26(11), 861-867 (1983)

Muller, M.J.: Participatory design: the third space in hci. In: The human-computer interaction
handbook, pp. 1087-1108. CRC press (2007)

Nardi, B.: A Small Matter of Programming: Perspectives on End User Computing. MIT Press,
Cambridge, MA, USA (1993)

Rayner, K., Pollatsek, A., Ashby, J., Jr., C.: Psychology of Reading. Psychology Press (2012).
DOI 10.4324/9780203155158

Rein, P., Tacumel, M., Hirschfeld, R.: Towards Empirical Evidence on the Comprehensibility
of Natural Language Versus Programming Language, pp. 111-131. Springer International
Publishing, Cham (2020). DOI 10.1007/978-3-030-28960-7_7

Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: A re-
view and discussion. Computer Science Education 13(2), 137-172 (2003). DOI
10.1076/csed.13.2.137.14200. URL https://doi.org/10.1076/csed.13.2.137.14200

Shaft, T.M., Vessey, I.: The relevance of application domain knowledge: The case of computer
program comprehension. Information systems research 6(3), 286299 (1995)

Sharif, B., Maletic, J.I.: An eye tracking study on camelcase and under_score identifier styles.
In: 2010 IEEE 18th International Conference on Program Comprehension, pp. 196-205. IEEE
(2010)

Von Mayrhauser, A., Vans, A.M.: Program comprehension during software maintenance and
evolution. Computer 28(8), 44-55 (1995)

Wilson, P., Pombrio, J., Krishnamurthi, S.: Can we crowdsource language design? In: Pro-
ceedings of the Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward!) 2017. ACM Press (2017). DOI 10.1145/3133850.3133863

Zhang, S., Schmader, T., Hall, WM.: L'eggo my ego: Reducing the gender gap in math by
unlinking the self from performance. Self and Identity 12(4), 400—412 (2013)

