
Automatic Reuse through Implied Methods
The Design and Implementation of an Abstraction Mechanism for Implied Interfaces

Patrick Rein
Hasso Pla�ner Institute, University of Potsdam

Potsdam, Germany
patrick.rein@hpi.uni-potsdam.de

CCS CONCEPTS
•So�ware and its engineering →Procedures, functions and
subroutines; Modules / packages;

KEYWORDS
implied methods, generic operations, modules, reuse, planning,
dispatch
ACM Reference format:
Patrick Rein. 2017. Automatic Reuse through Implied Methods. In Procee-
dings of Programming ’17, Brussels, Belgium, April 03-06, 2017, 3 pages.
DOI: h�p://dx.doi.org/10.1145/3079368.3079371

1 INTRODUCTION
Object-oriented systems enable code reuse through inheritance.
While multiple inheritance is a complex mechanism, single inheri-
tance mechanisms limit code reuse as they only allow for reusing
the implementation of a single class [2, 12]. As a result, a group
of mechanisms have been proposed, commonly referred to as mix-
ins [2, 4, 7, 12]. Mixins capture the de�nition of state, behavior, or
both. To reuse the code of a mixin, developers have to explicitly
apply it to a class.

However, developers might not always be able to explicitly ap-
ply a mixin to a class. For example, developers maybe want to
extend the interface of objects created by a library. In such a case,
developers sometimes do not have access to the library code or do
not want to change the class de�nitions in the library code as the
modi�cations complicate updates to the library. Another situation,
in which an explicit extension of a class is not possible, is when
developers deal with plain data objects with no explicit class. Such
objects might result from an application allowing users to import
data from unanticipated sources.

For some methods, an explicit application of a mixin is not ne-
cessary. Such methods are direct deductions of more basic methods.
For example, between:and:, which checks whether an Object is
within an interval, is directly expressed in terms of <=:
between : min and : max

ˆ min <= s e l f and : [s e l f <= max]
�ismethod is generally applicable to any object that implements

<=, given that the implementation matches the semantics of an

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Programming ’17, Brussels, Belgium
© 2017 Copyright held by the owner/author(s). 978-1-4503-4836-2/17/04. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3079368.3079371

ordering operator expected by between:and:. Other examples of
such methods include the collection protocol (select : , collect : ,
and similar) or geographical functions based on latitude or longitude
(greatCircleDistance or ellipsoidalDistance).

Based on this observation we propose an abstraction mechanism
which captures these implied methods. Based on the explicit de-
�nition of implied methods and their required interface, we also
propose an automatic mechanism to dynamically extend the inter-
face of suitable objects with these methods. As a result, implied
methods separate code speci�c to domain objects (the implemen-
tation of <= which is speci�c for each class) from code which is
concerned with the dependencies between general operations (the
implementation of between:and:). �ereby, implied methods can
make it easier to make interfaces of heterogeneous libraries com-
patible to each other.

2 IMPLIED METHODS
Implied methods consist of two parts:

(1) �e method implementation to be provided, for example
between:and:.

(2) A set of conditions the object has to comply with so that
the implied method can be applied. In our example, this
set only includes the condition that the object implements
<=.

To make sure that the object provides the behavior needed for
the implied method, the conditions can check for more than mere
availability of method names. For example, to provide methods
applicable to email addresses, the conditions might check whether
an object is a string and whether its contents match a regular
expression for an email address (see listing 1). �is extended set of
powerful conditions is necessary to distinguish between ambiguous
method names, for example the message <= might also refer to a
constructor for an association from right to le�.

Generally, an implied method becomes applicable when all con-
ditions are met by an object. �e method can then become available
in the interface of the object. As the conditions of an implied met-
hod might require other implied methods, the activation uses a
planning algorithm to search for a suitable combination of existing
implied methods.

Implied methods can be applied either in the case of a failed
dispatch or pro-actively, for example at the interface boundary
between a system and a library. Currently, the augmentation of
objects with implied methods is dynamically scoped to not pollute
the base system.

1

Programming ’17, April 03-06, 2017, Brussels, Belgium Patrick Rein

Listing 1: Squeak/Smalltalk example of implied methods
(#localPart, #domain) extending a String object which repre-
sents an email address. �e condition of these implied met-
hods is the runtime content of String objects.
EMa i l S t r i n g c l a s s >>#emai lRegex
ˆ ' ([a−zA−Z0 − 9 .] +)@([a−zA−Z0 −9\ − .] +) '

EMa i l S t r i n g c l a s s >># c ond i t i o n : o b j e c t
ˆ o b j e c t i s S t r i n g and : [o b j e c t
matchesRegex : s e l f emai lRegex]

EMa i l S t r i ng >># l o c a l P a r t
(s e l f a l lMa t c h e s : s e l f c l a s s emai lRegex)
subExp r e s s i on : 1

EMa i l S t r i ng >>#domain
(s e l f a l lMa t c h e s : s e l f c l a s s emai lRegex)
subExp r e s s i on : 2

3 IMPLEMENTATION AND OBSERVATIONS
We have implemented implied methods in Squeak/Smalltalk [8], to
evaluate the impact on the interactive nature of the environment,
and in Racket/Scheme [5], to evaluate consequences resulting from
a functional language. In both implementations implied methods
are grouped by their set of conditions. In Squeak/Smalltalk all
implied methods with the same set of conditions are described in
one class (see listings 1, 2). In Scheme all implied methods are
multi-methods sharing the same ”conditions class” for their �rst
argument. Both implementations currently extend the interface
dynamically. To preserve any explicitly de�ned behavior, such
as ordinary methods de�ned on the class of the object, implied
methods are dispatched last.

By using implied methods with the Squeak/Smalltalk standard
library, we were, for example, able to augment Point and String
objects with the between:and: message. Further, through de�ning
some intermediary implied methods we were also able to use one
interface on objects representing address information from three
sources.

Listing 2: Squeak/Smalltalk example of an implied method
#fullName extending objects which understand #�rstName
and #lastName.
FullName c l a s s >># c ond i t i o n : o b j e c t
ˆ o b j e c t unde r s t and s : # f i r s tName
and : [o b j e c t unde r s t and s : # las tName]

FullName>>#fu l lName
ˆ s e l f f i r s tName a s S t r i n g , ' '
, s e l f las tName a s S t r i n g

4 RELATEDWORK
Implied methods address the issue of �exible and �ne-grained reuse
in object-oriented systems. As they also provide a set of methods
from outside of the single inheritance hierarchy they are related to

the idea of Traits [4]. Further, implied methods are a mechanism
to extend existing classes without access to their code. In this
regard it is similar to many extension mechanisms like C# extension
methods [11], GO interfaces [16], and open classes [1, 3]. Scala
implicit classes even enable automatic extensions [14]. However, all
these approaches require developers to explicitly extend a particular
class with the new functionality. Further, most of them require
the extension to be bound to a class and not to objects and their
individual properties.

Pointcuts in aspect-oriented programming (AOP) [9] solve the
issue of explicitly naming a class to extend. However, AOP is
missing combination mechanism taking into account advices of
other applicable aspects.

�e automatic mitigation of interface incompatibilities is a ge-
neral topic of service-oriented architectures [10, 13]. �e call-by-
meaning approach addresses the challenge for programming lan-
guages through a solving algorithm at the heart of any message dis-
patch. However, it provides no explicit abstraction mechanism [15].

5 EVALUATION AND FUTUREWORK
Implied methods should help with reusing method de�nitions in
unanticipated situations. �us, we plan to evaluate the approach
through a case study. We will implement an application for mana-
ging personal contacts. As input it gets increasingly heterogeneous
data objects representing contact information (for example vcard
objects from various sources). A�er each increase in heterogeneity
we adjust the application to work with the new objects once using
ordinary object-oriented mechanisms and once using implied met-
hods. We will evaluate the number of lines of code necessary to
adjust the application and the number of reused methods [6].

One central issue of our approach is the introduction of am-
biguity into the system description as multiple implied methods
with the same name might be applicable based on the same inter-
face. �us, a remaining challenge are mechanisms and tool support
to enable developers to limit the set of useful implied methods to
be applied already during development time.

ACKNOWLEDGMENTS
I gratefully acknowledge the �nancial support of the Research
School of the Hasso Pla�ner Institute and the Hasso Pla�ner Design
�inking Research Program. I would also like to thank Stefan
Ramson, Jens Lincke, and Robert Hirschfeld for countless fruitful
discussions.

REFERENCES
[1] Ruby documentation. Technical Documentation, 2017. URL h�ps://ruby-lang.

org/. Accessed 23th of February 2017.
[2] G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings of the European

Conference on Object-oriented Programming on Object-oriented Programming
Systems, Languages, and Applications (ECOOP) 1990, OOPSLA/ECOOP ’90, pages
303–311, New York, NY, USA, 1990. ACM. ISBN 0-89791-411-2. doi: 10.1145/
97945.97982. URL h�p://doi.acm.org/10.1145/97945.97982.

[3] C. Cli�on, T. D. Millstein, G. T. Leavens, and C. Chambers. Multijava: Design
rationale, compiler implementation, and applications. ACM Trans. Program. Lang.
Syst., 28(3):517–575, 2006. doi: 10.1145/1133651.1133655. URL h�p://doi.acm.org/
10.1145/1133651.1133655.

[4] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. P. Black. Traits: A
mechanism for �ne-grained reuse. ACM Transactions on Programming Languages
and Systems, 28(2):331–338, 2006. doi: 10.1145/1119479.1119483. URL h�p:
//dl.acm.org/citation.cfm?id=1119483.

2

https://ruby-lang.org/
https://ruby-lang.org/
http://doi.acm.org/10.1145/97945.97982
http://doi.acm.org/10.1145/1133651.1133655
http://doi.acm.org/10.1145/1133651.1133655
http://dl.acm.org/citation.cfm?id=1119483
http://dl.acm.org/citation.cfm?id=1119483

Automatic Reuse through Implied Methods Programming ’17, April 03-06, 2017, Brussels, Belgium

[5] M. Fla� and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT
Design Inc., 2010. h�ps://racket-lang.org/tr1/.

[6] W. B. Frakes and C. Terry. So�ware reuse: Metrics and models. ACM Computing
Surveys, 28(2):415–435, 1996. doi: 10.1145/234528.234531. URL h�p://doi.acm.
org/10.1145/234528.234531.

[7] R. P. Gabriel. �e structure of a programming language revolution. In Proceedings
of the ACM Symposium on New Ideas in Programming and Re�ections on So�ware
(Onward!) 2012, part of SPLASH ’12, Tucson, AZ, USA, October 21-26, 2012, pages
195–214, 2012. doi: 10.1145/2384592.2384611. URL h�p://doi.acm.org/10.1145/
2384592.2384611.

[8] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. C. Kay. Back to the future:
�e story of squeak - A usable smalltalk wri�en in itself. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages & Applications
(OOPSLA) 1997, pages 318–326, October 1997. doi: 10.1145/263698.263754. URL
h�p://doi.acm.org/10.1145/263698.263754.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier, and
J. Irwin. Aspect-oriented programming. In Proceedings of European Conference
on Object-oriented Programming (ECOOP) 1997, pages 220–242, 1997.

[10] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE intelligent
systems, 16(2):46–53, 2001.

[11] Microso� Corporation. C language speci�cation 5.0. Technical report, 2012.
[12] D. A.Moon. Object-oriented programmingwith �avors. InConference Proceedings

on Object-oriented Programming Systems, Languages and Applications (OOPSLA)
1986, OOPSLA ’86, pages 1–8, New York, NY, USA, 1986. ACM. ISBN 0-89791-
204-7. doi: 10.1145/28697.28698. URL h�p://doi.acm.org/10.1145/28697.28698.

[13] L. D. Ngan and R. Kanagasabai. Semantic web service discovery: State-of-the-art
and research challenges. Personal Ubiquitous Comput., 17(8):1741–1752, Dec.
2013. ISSN 1617-4909. doi: 10.1007/s00779-012-0609-z. URL h�p://dx.doi.org/10.
1007/s00779-012-0609-z.

[14] J. Ortiz and D. Hall. Implicit classes. Scala Improvement Proposal, 2009. URL
h�p://docs.scala-lang.org/sips/completed/implicit-classes.html. Accessed 23th
of February 2017.

[15] H. Samimi, C. Deaton, Y. Ohshima, A.Warth, and T. D. Millstein. Call by meaning.
In Proceedings of the Symposium on New Ideas, New Paradigms, and Re�ections
on Programming & So�ware (Onward!) 2014, pages 11–28, October 2014. doi:
10.1145/2661136.2661152. URL h�p://doi.acm.org/10.1145/2661136.2661152.

[16] �e Go Authors. Go documentation. Technical Documentation, 2017. URL
h�ps://golang.org/. Accessed 23th of February 2017.

3

https://racket-lang.org/tr1/
http://doi.acm.org/10.1145/234528.234531
http://doi.acm.org/10.1145/234528.234531
http://doi.acm.org/10.1145/2384592.2384611
http://doi.acm.org/10.1145/2384592.2384611
http://doi.acm.org/10.1145/263698.263754
http://doi.acm.org/10.1145/28697.28698
http://dx.doi.org/10.1007/s00779-012-0609-z
http://dx.doi.org/10.1007/s00779-012-0609-z
http://docs.scala-lang.org/sips/completed/implicit-classes.html
http://doi.acm.org/10.1145/2661136.2661152
https://golang.org/

	1 Introduction
	2 Implied Methods
	3 Implementation and Observations
	4 Related Work
	5 Evaluation and Future Work
	Acknowledgments
	References

