Reading Logic as Code or as Natural Language Text
A Randomized Controlled Trial Experiment on the Comprehensibility of Object-oriented Source Code

in Comparison to Natural Language Text

Patrick Rein
patrick rein@hpi.uni-potsdam.de
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

CCS CONCEPTS

« Software and its engineering — General programming lan-
guages; Collaboration in software development; « General and ref-
erence — Empirical studies.

KEYWORDS

program comprehension, source code, natural language text, domain-
specific languages, controlled experiment, Smalltalk

ACM Reference Format:

Patrick Rein. 2019. Reading Logic as Code or as Natural Language Text:
A Randomized Controlled Trial Experiment on the Comprehensibility of
Object-oriented Source Code in Comparison to Natural Language Text. In
Companion of the 3rd International Conference on Art, Science, and Engineer-
ing of Programming (Programming ’19), April 1-4, 2019, Genova, Italy. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3328433.3328464

1 INTRODUCTION

Creating useful software systems requires a solid understanding
of the application domain of the system [1, 9]. Software develop-
ment teams thus often communicate with domain experts to elicit
domain knowledge and requirements for the system [4]. To cap-
ture the resulting shared understanding of the domain, software
developers and domain experts create artifacts such as graphical
models or glossaries [5]. Source code is another interesting format
for capturing the shared understanding of the domain as source
code files are the definitive documents for the actual behavior of a
software system.

At the same time, source code is a technical artifact and thus
might be unsuitable for the communication between non-programming
domain experts and the software development team. Domain-specific
languages and graphical modeling languages are often proposed to
enable domain experts to participate in the modification of source
code documents [2, 6, 10]. These approaches assume that general-
purpose programming languages result in source code documents
that are not accessible enough for non-programmers to work with
them.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Programming 19, April 1-4, 2019, Genova, Italy

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6257-3/19/04.

https://doi.org/10.1145/3328433.3328464

This specification completely describes
the registration process for a conference

Object subclass: #ConferenceRegistrationProcess
instanceVariableNames: 'participant’

for students organized by a university.
The process consists of five steps: (1) Confer oce.
asking for personal details, (2) selecting
an event type, (3) asking for ... Thi:

:= Participant new.
processStepOnePersonalDetails.
processStepTwoEventType.

First, ...

Second, the system asks the participant
whether they want to register only for
the workshops or for the whole
conference, which includes workshops.

Conferenc i ionProce:

woEventType

4

Figure 1: Sections from the English- and the Smalltalk-
variant of one of the two scenarios including the original
formatting.

Third, ... changeEventTypeTo:
(self askUserForEventType: {
#full -> 'Full Event’.

#workshops -> 'Workshops only'}).

We conducted a randomized controlled trial experiment to in-
vestigate this assumption. In detail, we investigated the hypothesis
that:

Given a problem domain with simple rules, people with little to no
programming experience score worse on a text comprehension task
given a Smalltalk program in comparison to an English text document.

We chose the object-oriented paradigm, as it is used for describ-
ing domain models [4]. We chose Smalltalk [7] as the programming
language because its syntax was designed to be minimal and resem-
ble English text.

The insights from our study are related to the empirical evi-
dence gathered on the effects of language features on programming
novices [3, 12]. Further, our results also relate to results from stud-
ies investigating the effects of a domain-specific language on the
productivity of experienced programmers [8]. However, in contrast
to these studies, we focus on non-programming domain experts
which do not intend to become proficient programmers.

2 EXPERIMENTAL DESIGN

We conducted a fixed-setup study through a 2x2 factorial experi-
ment [11]. The first factor was the format of the document: Smalltalk
source code or English text. To mitigate carry-over effects between
rounds, we introduced two scenarios as the second factor (see Fig-
ure 1). For each scenario, we devised ten questions. We designed the
scenarios to be of equal complexity to reduce the noise introduced
by the scenarios.

We operationalized the comprehension level as the number of
correctly answered questions on the content of the scenarios and

https://doi.org/10.1145/3328433.3328464
https://doi.org/10.1145/3328433.3328464

Programming ’19, April 1-4, 2019, Genova, Italy

r of participants
)

numbe

y L

AN PCNY o\ AN PN PN N N2
o2 o) 5 A)
>) Y

o
¢ O
RN P o 5O o O

Yl) 2O <o
\\\\ o> \\\\ O

o 2 > 5 Q
o \\\\\ o & o

time spent on questionnaire in minutes

Figure 2: A histogram of the time spent working on the com-
plete experiment in buckets of fifteen minutes.

the programming experience as the number of lines of code written
in the past reported through formal self-evaluation.

We conducted the experiment through Amazon Mechanical Turk
(MTurk). In total, we recruited 36 participants which had to hold
a U.S. bachelor’s degree. We ensured proper engagement with the
task through control questions. After discarding submissions from
participants with prior programming experience and submissions
which answered any control question wrongly, we had 31 partici-
pants.

3 RESULTS

As we employed a within-subject design, we used a paired t-test for
comparing the results (individual data see Figure 3 and Figure 4).
Therefore, we determined the mean of the differences between the
scores for the Smalltalk and the English language document of
each participant. The assumption of normality was met. The mean
difference is —1.42 (standard deviation 1.747) and the difference
between the scores is significantly different from zero (t3; = 4.524,
p < 0.001). This difference means that on average participants
scored fewer points on questionnaires about a Smalltalk document
than they did on questionnaires about a text document.

To check our assumption that the two different scenarios do not
influence the results, we also analyzed the difference between the
scores for the conference registration and the shop checkout sce-
nario. Again, assumption of normality for the differences was met.
The mean difference between the two scenarios is not significantly
different from zero (t37 = 1.656, p = 0.108).

3.1 Threats to Validity

We identified the following major threats to the validity of the
experiment. An external threat is the assumption that readers have
no programming background. In practice this might not hold for
domain experts working with software developers. An internal
threat to validity is the little amount of time invested by participants
(see Figure 2). Another internal threat is the potential difference in
task difficulty as suggested by outliers in the data (see Figure 4).

4 CONCLUSION AND FUTURE WORK

The results of our experiment suggest that object-oriented source
code written in Smalltalk is less comprehensible to non-programming
domain experts for the tested types of scenarios. At the same time

Patrick Rein

10

3 3/ 3
L

number of correcntly answered questions
» w
w

2 2 2
1 1
0
code (co) text (re)

group

Figure 3: A chart showing the comprehension score of each
participant (connected by a line). This chart shows all par-
ticipants working on the checkout scenario in code and the
registration scenario in text.

10

number of correcntly answered questions
w

4 4 a
3 3
2 —
1
0
code (re) text (co)

group

Figure 4: A chart showing the comprehension score of each
participant (connected by a line). This chart shows the com-
plementary group of participants to Figure 3: all partici-
pants working on the checkout scenario in text and the reg-
istration scenario in code.

the difference is less pronounced than we expected. Overall, the
results should be regarded as preliminary, as outliers suggest re-
maining issues with the comparability of the scenario difficulty.
For future work, we will revise the experiment setup to eliminate
any potential influence from the different scenarios so we can
use the experiment as a baseline for further experiments into the
comprehensibility of source code for non-programmers.

Reading Logic as Code or as Natural Language Text

REFERENCES

[1] Kent Beck. 2000. Extreme Programming Explained: Embrace Change. Addison-

[2

[3

[4

5

—

]

Wesley Longman Publishing Co., Inc., Boston, MA, USA.

T. Cheng, E. Lock, and N. Prywes. 1984. Use of Very High Level Languages and
Program Generation by Management Professionals. IEEE Transactions on Software
Engineering SE-10, 5 (1984), 552-563. https://doi.org/10.1109/TSE.1984.5010279
Alireza Ebrahimi. 1994. Novice Programmer Errors: Language Constructs and
Plan Composition. International Journal of Human-Computer Studies 41, 4 (1994),
457-457. https://doi.org/10.1006/ijhc.1994.1069

Eric Evans. 2004. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional.

David N Ford and John D Sterman. 1998. Expert knowledge elicitation to improve
formal and mental models. System Dynamics Review: The Journal of the System
Dynamics Society 14, 4 (1998), 309-340.

[6] Martin Fowler. 2010. Domain-Specific Languages. Pearson Education.

Programming ’19, April 1-4, 2019, Genova, Italy

[7] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its

8

]

Implementation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Johann Thor Mogensen Ingibergsson, Stefan Hanenberg, Joshua Sunshine, and
Ulrik Pagh Schultz. 2018. Experience Report: Studying the Readability of a
Domain Specific Language. In Proceedings of the 33rd Annual ACM Symposium
on Applied Computing (SAC ’18). ACM, New York, NY, USA, 2030-2033. https:
//doi.org/10.1145/3167132.3167436

Gerald Kotonya and Ian Sommerville. 1998. Requirements Engineering: Processes
and Techniques (1st ed.). Wiley Publishing.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and How to
Develop Domain-Specific Languages. Comput. Surveys 37, 4 (2005), 316-344.
Colin Robson. 2002. Real World Research. Blackwell Publishing.

Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. Trans. Comput. Educ. 13, 4, Article 19 (Nov.
2013), 40 pages. https://doi.org/10.1145/2534973

https://doi.org/10.1109/TSE.1984.5010279
https://doi.org/10.1006/ijhc.1994.1069
https://doi.org/10.1145/3167132.3167436
https://doi.org/10.1145/3167132.3167436
https://doi.org/10.1145/2534973

	1 Introduction
	2 Experimental Design
	3 Results
	3.1 Threats to Validity

	4 Conclusion and Future Work
	References

