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1 INTRODUCTION

Creating useful software systems requires a solid understanding
of the application domain of the system [1, 9]. Software develop-
ment teams thus often communicate with domain experts to elicit
domain knowledge and requirements for the system [4]. To cap-
ture the resulting shared understanding of the domain, software
developers and domain experts create artifacts such as graphical
models or glossaries [5]. Source code is another interesting format
for capturing the shared understanding of the domain as source
code files are the definitive documents for the actual behavior of a
software system.

At the same time, source code is a technical artifact and thus
might be unsuitable for the communication between non-programming
domain experts and the software development team. Domain-specific
languages and graphical modeling languages are often proposed to
enable domain experts to participate in the modification of source
code documents [2, 6, 10]. These approaches assume that general-
purpose programming languages result in source code documents
that are not accessible enough for non-programmers to work with
them.
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This specification completely describes
the registration process for a conference

Object subclass: #ConferenceRegistrationProcess
instanceVariableNames: 'participant’

for students organized by a university.
The process consists of five steps: (1) Confer oce.
asking for personal details, (2) selecting
an event type, (3) asking for ... Thi:

:= Participant new.
processStepOnePersonalDetails.
processStepTwoEventType.

First, ...

Second, the system asks the participant
whether they want to register only for
the workshops or for the whole
conference, which includes workshops.

Conferenc i ionProce:

woEventType

4

Figure 1: Sections from the English- and the Smalltalk-
variant of one of the two scenarios including the original
formatting.

Third, ... changeEventTypeTo:
(self askUserForEventType: {
#full -> 'Full Event’.

#workshops -> 'Workshops only'}).

We conducted a randomized controlled trial experiment to in-
vestigate this assumption. In detail, we investigated the hypothesis
that:

Given a problem domain with simple rules, people with little to no
programming experience score worse on a text comprehension task
given a Smalltalk program in comparison to an English text document.

We chose the object-oriented paradigm, as it is used for describ-
ing domain models [4]. We chose Smalltalk [7] as the programming
language because its syntax was designed to be minimal and resem-
ble English text.

The insights from our study are related to the empirical evi-
dence gathered on the effects of language features on programming
novices [3, 12]. Further, our results also relate to results from stud-
ies investigating the effects of a domain-specific language on the
productivity of experienced programmers [8]. However, in contrast
to these studies, we focus on non-programming domain experts
which do not intend to become proficient programmers.

2 EXPERIMENTAL DESIGN

We conducted a fixed-setup study through a 2x2 factorial experi-
ment [11]. The first factor was the format of the document: Smalltalk
source code or English text. To mitigate carry-over effects between
rounds, we introduced two scenarios as the second factor (see Fig-
ure 1). For each scenario, we devised ten questions. We designed the
scenarios to be of equal complexity to reduce the noise introduced
by the scenarios.

We operationalized the comprehension level as the number of
correctly answered questions on the content of the scenarios and
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Figure 2: A histogram of the time spent working on the com-
plete experiment in buckets of fifteen minutes.

the programming experience as the number of lines of code written
in the past reported through formal self-evaluation.

We conducted the experiment through Amazon Mechanical Turk
(MTurk). In total, we recruited 36 participants which had to hold
a U.S. bachelor’s degree. We ensured proper engagement with the
task through control questions. After discarding submissions from
participants with prior programming experience and submissions
which answered any control question wrongly, we had 31 partici-
pants.

3 RESULTS

As we employed a within-subject design, we used a paired t-test for
comparing the results (individual data see Figure 3 and Figure 4).
Therefore, we determined the mean of the differences between the
scores for the Smalltalk and the English language document of
each participant. The assumption of normality was met. The mean
difference is —1.42 (standard deviation 1.747) and the difference
between the scores is significantly different from zero (t3; = 4.524,
p < 0.001). This difference means that on average participants
scored fewer points on questionnaires about a Smalltalk document
than they did on questionnaires about a text document.

To check our assumption that the two different scenarios do not
influence the results, we also analyzed the difference between the
scores for the conference registration and the shop checkout sce-
nario. Again, assumption of normality for the differences was met.
The mean difference between the two scenarios is not significantly
different from zero (t37 = 1.656, p = 0.108).

3.1 Threats to Validity

We identified the following major threats to the validity of the
experiment. An external threat is the assumption that readers have
no programming background. In practice this might not hold for
domain experts working with software developers. An internal
threat to validity is the little amount of time invested by participants
(see Figure 2). Another internal threat is the potential difference in
task difficulty as suggested by outliers in the data (see Figure 4).

4 CONCLUSION AND FUTURE WORK

The results of our experiment suggest that object-oriented source
code written in Smalltalk is less comprehensible to non-programming
domain experts for the tested types of scenarios. At the same time
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Figure 3: A chart showing the comprehension score of each
participant (connected by a line). This chart shows all par-
ticipants working on the checkout scenario in code and the
registration scenario in text.
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Figure 4: A chart showing the comprehension score of each
participant (connected by a line). This chart shows the com-
plementary group of participants to Figure 3: all partici-
pants working on the checkout scenario in text and the reg-
istration scenario in code.

the difference is less pronounced than we expected. Overall, the
results should be regarded as preliminary, as outliers suggest re-
maining issues with the comparability of the scenario difficulty.
For future work, we will revise the experiment setup to eliminate
any potential influence from the different scenarios so we can
use the experiment as a baseline for further experiments into the
comprehensibility of source code for non-programmers.
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