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ABSTRACT
We present the implementation of several programming lan-
guages with support for multi-dimensional separation of con-
cerns (MDSOC) on top of a common delegation-based sub-
strate, which is a prototype for a dedicated MDSOC virtual
machine. The supported MDSOC language constructs range
from aspects, pointcuts and advice to dynamically scoped
and activated layers. The presented language implementa-
tions show that the abstractions offered by the substrate are
a viable target for high-level language compilers.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—run-time
environments

Keywords
Crosscutting concerns, modularization, aspect-oriented pro-
gramming, context-oriented programming, machine model,
language implementation

1. INTRODUCTION
Programming language abstractions for crosscutting con-

cern modularization and composition constitute a program-
ming paradigm in its own right, which has been referred to
as multi-dimensional separation of concerns (MDSOC) [19].
It has spawned several approaches, including aspect-oriented
programming (AOP) [8] and context-oriented programming
(COP) [7]. MDSOC language implementations, however, do
not provide sufficient dedicated run-time environment sup-
port for MDSOC mechanisms.

In [6], we presented a machine model centered on the basic
notions of objects, messages and delegation [9], which was
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showed to naturally support an important set of language
mechanisms designed to modularize crosscutting concerns.

Subsequently, [4] provided mappings from the semantics
of four languages supporting different modularization mech-
anisms to this model. More specifically, the j language fam-
ily [17] was used. The j language itself is a Java subset
that is gradually extended with different mechanisms for
the modularization of crosscutting concerns. Here, ij adds
inter-type declarations, while aj adds pointcuts and advice.
cj [4] is an addition to the j language family. cj does not
include the features of ij and aj, but instead adopts context-
oriented programming (COP) [7], a layer-based approach to
the modularization of crosscutting concerns. Layers allow
context-specific behavioral variations to be composed based
on the execution context.

In summary, the aforementioned semantic mappings for
the j language family formally suggest a translation process
from different MDSOC approaches to the basic functionality
offered by our delegation-based machine model.

This paper presents an implementation of our machine
model as an instruction set for a virtual machine (VM)
with inherent MDSOC support. Moreover, it contributes
the technical realization of the translation process, making
the j language family executable on top of this delegation-
based VM prototype. In particular, the presented language
implementations are j, cj and iaj, the latter containing the
features of both ij and aj. We emphasize once more that
the implementations shown in this paper represent a proof-
of-concept effort, intended to illustrate our machine model’s
viability to serve as a common substrate for MDSOC lan-
guages. Efforts to achieve performance comparable to exist-
ing OOP implementations belong to future work.

The paper is organized as follows. In the next section,
we briefly revisit the machine model, and provide a short
description of the framework that was used for its imple-
mentation. Sec. 3 describes the high-level j, iaj and cj pro-
gramming languages, while Sec. 4 details their translation
process to our instruction set constituting the implementa-
tion kernel, a presentation of which is also included in that
section. Sec. 5 attends to related work, before the paper is
summarized and future work is discussed in Sec. 6.

2. MACHINE-LEVEL SUPPORT
FOR CROSSCUTTING CONCERNS

This section gives brief overviews of the execution model
supporting the implementation substrate presented in this
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Figure 1: An object and its proxy.

paper, and of the implementation framework used to realize
the substrate in software.

2.1 A Machine Model
The machine model we use in this work to implement

several programming language approaches to modularizing
crosscutting concerns has been introduced in [6].

Core features of the model pertain to the representation of
application entities, and that of join points. The latter are
regarded as loci of late binding, and hence of virtual func-
tionality dispatch, where dispatch is organized along mul-
tiple dimensions. Each dimension is one possible way to
choose a particular binding of a piece of functionality to a
join point, e. g., the current object, the target of a method
call, the invoked method, the current thread, etc.

Objects are, using a prototype-based object-oriented en-
vironment, represented as “seas of fragments” [12]: each ob-
ject is visible to others only in the form of a proxy. Messages
sent to an object are received by its proxy and delegated to
the actual object, as displayed in Fig. 1. Classes are repre-
sented likewise: each class is a pair of a proxy and an object
representing the actual class. Each object references its class
by delegating to the class’s proxy.

The granularity of the supported join point model is that
of message receptions. Member field access is also mapped
to messages. A join point’s nature as a locus of late binding
is realized by inserting additional proxy objects in between
the proxy and the actual object, or in between the class ob-
ject’s proxy and the actual class-representing object. That
way, a message passed on along the delegation chain can be
interpreted differently by various proxies understanding it,
establishing late binding of said message to functionality.

Weaving—both static and dynamic—is realized by allow-
ing for the insertion and removal of proxy objects into and
from delegation chains. The model is able to represent
control-flow dependent advice and dynamic introductions in
very natural and simple ways [6].

2.2 An Implementation Framework
For an implementation of both the model and program-

ming languages on top of it, a framework supporting proto-
type-based object-oriented programming with Lieberman-
style prototypes [9] is required. Lieberman-style prototypes
ensure maximum flexibility by allowing an object to trans-
parently delegate messages to any other object, whether or
not it was originally cloned from the same parent prototype.

Another requirement for the implementation framework
is that it should bring reflective capabilities strong enough
to facilitate the dynamic modification of delegation chains
between objects. Finally, it should support the implemen-
tation of programming languages.

The COLA (Combined Object-Lambda Abstractions) [13]
project combines the aforementioned requirements in an el-
egant way, rendering it a useful framework for the purpose
of implementing the model outlined in Sec. 2.1. We will now

1 PROG ::= CLS*
2 CLS ::= class CLSNAME ext CLSNAME { DECL* }
3 DECL ::= FIELD | METH
4 FIELD ::= TYPE IDENT
5 METH ::= TYPE IDENT ( TYPE x ) { EXPLST }
6 EXPLST ::= EXP < ; EXP >*
7 EXP ::= SPECIAL | VAR | new CLSNAME
8 | EXP . IDENT EXP . IDENT := EXP
9 | EXP . IDENT ( EXP ) | EXP == EXP

10 | if ( EXP ) { EXP } else { EXP }
11 SPECIAL ::= true | false | null | NUM | STR
12 VAR ::= this | x

Listing 1: j syntax definition.

give a brief overview of it as of the time of this writing.
COLA consists of two main parts. The object part pro-

vides object-oriented abstraction by means of a minimal
prototype-based object model [14] and a language with
Smalltalk-like syntax that makes programming using the
model possible. Both model and language are fully reflective
and can bootstrap themselves.

On top of the object part, the function part provides func-
tional abstraction. At this level, a programming language
is available that represents C abstract syntax trees (ASTs)
as S-expressions. The language also features macro defini-
tion and expansion capabilities as found in Scheme, making
it a powerful tool for program transformation and genera-
tion. From within programs written for the function part
of COLA, the underlying object part is still fully accessible.
It is possible to choose between applicative and message-
passing semantics. The function part of COLA is imple-
mented using a just-in-time (JIT) compiler (realized as a
COLA program itself) generating optimized native code.

An implementation of parsing expression grammars (PEGs)
[3] was realized in the function part of COLA. With the PEG
framework, it is very easy to define language implementa-
tions. Essentially, a rule of a PEG consists of grammar parts
on the one hand, and of action parts on the other. Exploit-
ing the features of COLA’s function part—especially their
macro-expansion capabilities—, it is straightforward to use
the action parts of PEG rules to return COLA ASTs.

3. THE j LANGUAGE FAMILY
Next, we describe a number of minimalistic yet high level

programming languages. All languages are based on j [17],
a Java subset, and gradually add mechanisms to facilitate
the implementation of crosscutting concerns.

3.1 The Core Language: j
j [17] is the core language and a subset of Java. Apart

from a few very minor tweaks, such as the omission of in-
terfaces (which are irrelevant since we do not focus on the
static type system), the version presented in this paper is
exactly the same. Its syntax is shown in Lst. 1.

A program consists of a number of classes, each inheriting
from exactly one superclass and containing fields and meth-
ods. A method always accepts exactly one formal parameter
which must be called x, and method bodies are composed of
a list of expressions.

Local variables are not included, as they can be easily sim-
ulated by assigning values to fields of the formal parameter.
Similarly, multiple parameters can be passed by encapsulat-
ing them in a single object, and passing that object instead.
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1 PROG ::= < CLS | ASP >*
2 CLS ::= class CLSNAME ext CLSNAME { DECL* INTR* }
3 ASP ::= aspect CLSNAME { DECL* INTR* ADVICE* }
4 INTR ::= CLSNAME <-- DECL
5 ADVICE ::= < before | after | TYPE around >
6 PNTCT { EXPLST }
7 PNTCT ::= BPNTCT
8 < && cflow ( TYPE TYPE.IDENT(TYPE) ) >?
9 BPNTCT ::= call ( TYPE TYPE.IDENT(TYPE) )

10 | get ( TYPE TYPE.IDENT )
11 | set ( TYPE TYPE.IDENT )
12 EXP ::= ... | proceed ( EXP? )
13 VAR ::= this | x | s | r | v

Listing 2: Differences between j and iaj syntax.

Constants such as strings, numbers, true, false and null

are primitive expressions, as are occurrences of this and
the formal parameter x. More complex expressions can be
formed in a very limited number of ways. In order of presen-
tation, only class instantiation (via new), field access (both
get and set), method invocation and comparison for equal-
ity are allowed, as well as an if-then-else construct. Finally,
IDENT, CLSNAME and TYPE are all considered to be identifiers.

3.2 Introductions, Pointcuts and Advice: iaj
ij and aj were originally introduced as two separate ex-

tensions to j in [17], with ij adding inter-type declarations,
and aj adding aspects with pointcuts and (before and after)
advice. We present one combined language iaj here. Also,
unlike the original aj, the version presented here supports
around advice and cflow pointcuts. Hence, iaj can be re-
garded as a subset of AspectJ. The syntactical differences
to j are listed in Lst. 2.

The definition of a class is extended to include inter-type
declarations, which are described by the INTR rule. Each
inter-type declaration adds either a field or a method to the
definition of another (previously defined) class.

Apart from classes, a program may now include any num-
ber of aspects, which can contain advice. Advice may be
subject to a cflow specification, meaning it should only ap-
ply provided the join point in question occurs within the
control flow of a particular method. Supported join points
include method calls and field access.

In advice bodies, some extra predefined variables are made
available. More specifically s, denoting the caller object, r,
the intended receiver object, and v, the value which should
be assigned to a field in case of a set pointcut.

3.3 Context-oriented Programming: cj
Unlike iaj, the cj extension to j implements the concepts

of context-oriented programming (COP) [7].
Context-oriented programming helps developers to mod-

ularize context-dependent behavior. Behavioral variations,
or partial definitions of the underlying programming sys-
tem, are organized in layers where each layer aggregates a
context-dependent part of a system’s property or concern.
Layers can be activated and deactivated at runtime.

cj is implemented as an extension to j. The syntactic
differences are shown in Lst. 3. Layers can be defined at
top level as well as class level. A top-level layer definition
contains method definitions that directly pertain to certain
classes as expressed in the LMETH rule. Class-level layers im-
plicitly affect methods of the surrounding class, hence they
rely on the (unmodified) METH rule. The EXP rule has been

1 PROG ::= < CLS | LAYER >*
2 CLS ::= class CLSNAME ext CLSNAME { EXTDECL* }
3 EXTDECL ::= DECL | CLAYER
4 LAYER ::= layer CLSNAME { LDECL* }
5 LDECL ::= FIELD | LMETH
6 LMETH ::= TYPE CLSNAME.IDENT ( TYPE x ) { EXPLST }
7 CLAYER ::= layer CLSNAME { DECL* }
8 EXP ::= ... | withlayer ( CLSNAME ) { EXP }
9 | withoutlayer ( CLSNAME ) { EXP }

10 | proceed ( EXP )
11 VAR ::= thisLayer | this | x | s

Listing 3: Differences between j and cj syntax.

extended with expressions for activating and deactivating a
given layer, and for proceeding execution in the next layer
or invoking the original method implementation.

While s has similar meaning as with iaj, an additional
thisLayer keyword is needed. In a withlayer block, it can
be used to access layer fields, while this is used to access
fields belonging to the class the code occurs in.

4. IMPLEMENTING THE j LANGUAGES
In this section, we will first present a kernel implement-

ing the core mechanisms of the machine model for MDSOC
languages. The kernel consists of the basic implementation
of the delegation-based machine model, as well as a number
of core abstractions heavily relied on during the translation
process. We will then present implementations of each of
the languages described in Sec. 3.

4.1 The Kernel
As stated in Sec. 2.1, the representation of objects as “seas

of fragments” is a core feature of the kernel. Consequently,
the starting point of the kernel is ProxifiedObject, a proto-
type which was added to the object part of COLA (cf. Sec. 2.2).
ProxifiedObject is implemented in such a way that cloning
it results in a pair of two objects: a regular object and a
proxy, as displayed in Fig. 1. All messages, including the
vtable message, which returns a dictionary containing all
messages understood by an object, are delegated by the
proxy to the actual regular object. Hence, understanding,
adding and removing messages is always realized using the
regular object’s virtual method table (VMT), as desired.
From now on, ProxifiedObject will serve as the prototype
for all objects created during the execution of a program
written in one of the j -based languages from Sec. 3.

Essential operations such as the creation of class objects
and class instantiation can now be implemented as a set
of macros, constituting an API which can be regarded as
part of the instruction set of a virtual machine with dedi-
cated support for composing crosscutting concerns. The ab-
stractions in this kernel API constitute an implementation
substrate, effectively providing an execution environment re-
alizing the delegation-based machine model. The provided
core instructions are as follows.

define-class creates an object representing a class by cloning
a base class object without copying the latter’s methods.

This may be ProxifiedObject or a class previously cre-
ated through define-class. The inheritance relationship
between the two classes is established once more by means
of delegation. The actual class object of the newly created
class delegates messages which it can not handle to the proxy

1946



m1 = (...)
m2 = (...)

SpBlueprint

CBlueprint

cInstance getf1 = (self _getf1)
setf1 = (self _setf1)

getf2 = (self _getf2)
setf2 = (self _setf2)

_getf1 = (...)
_setf1 = (...)

_getf1 = (...)
_setf1 = (...)
_getf2 = (...)
_setf2 = (...)

_getf1 = (...)
_setf1 = (...)
_getf2 = (...)
_setf2 = (...)

Figure 2: Instance cInstance of class Class.

of the base class. Hence, all class objects eventually dele-
gate to ProxifiedObject, which handles cloning, and en-
sures classes always appear as a combination of a proxy and
the actual class object.

Accessor methods for each field are installed in the class’s
VMT. Field access should always occur via these class-wide
accessors. This is necessary to allow for the possibility of
inserting a proxy object in between the class proxy and the
actual class object, which may then intercept field access for
all instances at once. Next, a blueprint object is created, a
reference to which is stored in the class object. The blueprint
object contains slot-based accessors [14] which must be in-
stalled in instance objects. These slot-based accessors es-
sentially manage a memory location for each field and are
invoked by the class-level accessors. They are prefixed with
_ to prevent them from hiding the class-level accessors.

define-send creates a function which is installed as a method
in the VMT of a (class) object. All methods created this way
declare a formal sender argument, making the caller object
of a message available in the corresponding method imple-
mentation. The default value for the sender argument is
self at the caller site.

create-instance instantiates a class object by cloning its
blueprint object, arranging the delegation chain so that the
instance object delegates to the class proxy, as displayed
in Fig. 2, and installing the accessors found in the class’s
blueprint.

create-proxy creates a proxy object with the purpose of
inserting it in an object’s delegation chain, in between that
object’s proxy and the actual object. A number of meth-
ods may be installed in a proxy’s VMT. As such, the proxy
will effectively intercept those messages before they reach
their intended receiver. Additionally, a proxy may install
slot-based accessors for fields in its VMT, thus allowing for
dynamic field introductions (cf. [6] and Sec. 4.3).

insert-proxy inserts a proxy in the delegation chain of a
specific object. If no existing proxy is provided, a new one
is created as in create-proxy.

remove-proxy searches an object’s delegation chain for a
certain proxy and removes it.

define-proxy-send creates a function which is installed as
a method in a proxy’s VMT. The reason a dedicated in-
struction is necessary besides define-send is that a proxy’s

VMT cannot be obtained by sending the vtable message,
as a proxy, by definition, does not understand that message.

send sends a message to an object. self is passed as sender
argument, unless an alternative is explicitly provided. If the
message is not understood, it is delegated to the next object
in the delegation chain. This object is found by sending the
_delegate message to the original receiver.

resend may be invoked in a method body, and forces the
message to be delegated along the delegation chainwithout
rebinding self. The sender argument remains unchanged
as well, as any receivers further along the delegation chain
should be unaware of the fact that the message has been
intercepted earlier. Resending is useful, e. g., in case of
around advice, where resending a message allows the orig-
inal method implementation, further along the delegation
chain, to be executed.

4.2 The j Implementation
Taking another look at Lst. 1, we will now explain how j ’s

language constructs can be mapped onto the kernel API.
For each class, parsed by the CLS rule, define-class is

invoked. As arguments, the class name, the name of its
base class (defaulting to ProxifiedObject) and a list of field
names are passed. For each method, parsed by the METH rule,
a define-send is generated with a formal argument named
x, installing the method implementation in the class’s VMT.

The method body comprises a number of expressions.
Constant expressions, as parsed by the SPECIAL rule, just
map to their equivalent in COLA, while this maps to self

and x does not even need translation, as it is known since it
was declared a formal argument.
new expressions result in a call to create-instance. All

other variants of the EXP rule generate sends, be it accessors
(in case of field read or write) or method invocations. All in-
structions generated so far can be regarded as initialization,
as they create the necessary objects and install the required
functionality. In order to actually execute the program, a
final send is generated which sends a message called main to
a command-line specified entry class. main is always passed
an instance of the entry class as an argument, enabling ac-
cess to its fields via x.

Consider the example listed in Lst. 4, which is written in
j syntax. A first effect of parsing the Subject class is the
generation of

(define -class Subject (attr obs))

Next, all three methods are installed in the class’s VMT.
For setObserver, for example, this is done by

(define -send setObserver Subject x <impl >)

where <impl> is the method body, which assigns the value
x to self’s obs field by means of

(send setobs self x)

The Observer and Main classes are handled similarly. Main
holds the entry point to the program, being the main method.
In order to start execution, the main message is sent directly
to the Main class object, while an instance of Main is passed
as the argument:

(send main Subject 0 (create -instance Main))
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1 class Subject {
2 Integer attr
3 Observer obs
4

5 void doSomething(Object x) {
6 this.attr := 25 }
7 void changed (Object x) {
8 this.obs.update(this) }
9 void setObserver (Observer x) {

10 this.obs := x }
11 }
12 class Observer {
13 void update (Subject x) {
14 out.println(x.attr) }
15 }
16 class Main {
17 Subject s
18 Observer o
19

20 void main(Main x) {
21 x.s := new Subject;
22 x.o := new Observer;
23 x.s.setObserver(x.o);
24 x.s.doSomething(null);
25 x.s.changed(null) }
26 }

Listing 4: Example j code

Note that the extra argument 0 is passed as the sender,
as the default value self is undefined here. The sender
is therefore not available during execution of main. The
program in Lst. 4 eventually outputs the number 25.

4.3 The iaj Implementation
Looking at Lst. 2, iaj basically adds aspects, inter-type

declarations, advice, a proceed expression and a few prede-
fined variables.

For aspects, the define-aspect function is implemented
on top of the kernel. It is rather similar to define-class,
but somewhat simpler, since aspect objects are singletons
and can not be instantiated. Consequently, they do not
need a blueprint object, and slot-based accessors for fields
can be installed in the aspect object itself.

A method introduction is handled similarly to a normal
method, except that it is installed in the specified class’s
VMT, and not in the one of the class being defined.

Field introductions are a bit more tricky, as elaborated
in [6]. First of all, class-wide accessors for the field are in-
stalled in the specified class’s VMT. Then, a pair of accessors
prefixed with _, which would normally be in the blueprint
object, is installed class-wide as well, albeit with a specific
implementation: instead of containing code for field manip-
ulation, they actually invoke insert-proxy, which creates a
proxy and inserts it in the delegation chain of the instance
which sent the accessor message. The proxy contains the
actual slot-based accessors for the field value. Next, the ac-
cessor message is sent to self once more. This time, how-
ever, it will be intercepted by the proxy, and the field value
will be read or written, as appropriate. From now on, the
class-wide accessors with the same name as the slot-based
accessors in the proxy are effectively hidden, ensuring proxy
creation for the same field will never occur twice.

Upon parsing non-cflow advice (cf. the ADVICE rule), an
insert-proxy instruction is generated, inserting a proxy in
the delegation chain of the class object specified in the point-
cut. Next, a method, as specified in the pointcut, is inserted
in the proxy’s VMT by means of define-proxy-send.

In case of cflow advice, the same mechanism should still
apply, except that proxy insertion should now occur dynam-
ically upon entering the control flow of a particular method.
This is achieved by means of continuous weaving (cw), as
explained in [6]. This involves a second proxy (the cw-
proxy) which intercepts the cflow method, inserts the re-
quired proxy while undeploying itself, then delegates in or-
der to execute the cflow method, and finally removes the
proxy and deploys itself again. The cw-proxy needs to dy-
namically undeploy and redeploy itself in the process, in
order to guarantee it will insert only one proxy, even in the
advent of recursive calls.1

Note that, since field accesses and method invocations are
handled by means of message sends, virtually no distinction
between get, set and call pointcuts is needed, except in the
argument list. Indeed, a getter does not take any arguments,
while setters and regular methods take exactly one.

The proceed expression, which should only occur in around

advice, maps nicely to a resend, whose result is kept in a
local result variable. This variable is eventually returned
as the return value of the advice. In case of before and
after advice, a resend instruction is automatically added,
respectively at the end and the beginning of the advice.

Dealing with the additional predefined variables r, s and
v, which should only appear inside advice, is straightforward
as well. r denotes the intended receiver object, which is the
instance to which the message was sent. Since the advice
proxy was inserted in the delegation chain of this instance’s
class, and hence also in the instance’s delegation chain, this
is equivalent to self. In normal methods, this maps to
self, but in advice this should refer to the aspect singleton,
which is easily achieved since aspect names, like class names,
are available in the global namespace.
s denotes the sender object that sent the message in ques-

tion. As stated in Sec. 4.1, a formal sender argument is al-
ways provided by define-send, and a value is always passed
when using send. Therefore s can simply be mapped to
sender. Finally, v is only relevant in advice for set join
points, and denotes the value that was passed to the setter
message. As advice are implemented as a method with the
same signature as the original method, this value is passed
to the advice anyway, and therefore readily available.

Consider the sample iaj code in Lst. 5. When the Observer
aspect is parsed,

(define -aspect Observer (changed ))

is generated, creating a singleton object with slot-based ac-
cessors for the changed field.

Introduction of the changed method into the Subject

class is handled by generating code in order to insert it in
Subject’s VMT:

(define -send changed Subject x <impl >)

Note that this code is indeed exactly the same as in Sec. 4.2,
although the method was declared in a different class this
time. This means the occurrence of this in its body will
not refer to the aspect singleton, but to the active instance
of Subject.

1This implementation deviates from the model description
[6] which utilizes delegate functions whose result depends on
the thread. As delegate functions and multi-threading are
not yet supported in the AOP kernel implementation, the
solution presented here was chosen.
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1 class Subject {
2 Integer attr
3 }
4 aspect Observer {
5 bool changed
6

7 Subject <-- bool processed
8 Subject <-- void changed(Object x){
9 out.println(this.attr);

10 this.processed := true }
11

12 before set(Integer Subject.attr){
13 this.changed := v.neq(r.attr) }
14 after set(Integer Subject.attr){
15 if (this.changed ){ r.changed(null) }
16 else { null }}
17 }
18 aspect Logger {
19 before get(Integer Subject.attr) &&
20 cflow(void Subject.changed(Object )) {
21 out.println ("LOG: get Subject.attr") }
22 }
23 class Main {
24 Subject s
25

26 void main (Main x) {
27 x.s := new Subject;
28 x.s.attr := 25 }
29 }

Listing 5: Example iaj code

The introduction of the processed field, which is present
in Lst. 5 mainly for illustration purposes, needs a bit more
complicated code. First, class-wide accessors for the field
are installed in Subject’s VMT:

(define -send getprocessed Subject
(send _getprocessed self sender ))

(define -send setprocessed Subject value
(send _setprocessed self sender value))

Next, the special accessors are installed as well:

(define -send _getprocessed Subject
(let () (insert -proxy self (processed ))

(send _getprocessed self sender )))
(define -send _setprocessed Subject value

(let () (insert -proxy self (processed ))
(send _setprocessed self sender value )))

Their implementations are very similar. In fact, the first
instruction, insert-proxy, is exactly the same. It creates a
proxy with proper slot-based accessors _getprocessed and
_setprocessed, and inserts it in the delegation chain of
self, which refers to the (proxy of) the instance object
which attempted to access the field. The second part of
the method bodies of the special accessors simply sends the
relevant accessor message once more to self. This time, it
will be intercepted by the proxy, and the appropriate ac-
tion will take place. All this time, the sender argument is
simply passed on instead of updated, so that the accessor
implementation ultimately handles the original message, is
unaware of whatever happened behind the scenes.

The before advice on line 12 in Lst. 5, which should apply
upon setting the attr field of the Subject class, triggers
creation of a proxy, which is inserted in the delegation chain
of the Subject class object:

(insert -proxy Subject)

Next, a method with the same signature as the setter of
attr is installed in the proxy’s VMT:

(define -proxy -send setattr <proxy > v <impl >)

where <proxy> is the name of a local variable to which the re-
sult of insert-proxy has been assigned, and <impl> consists
of the instructions in the body. Because the define-proxy-send
above explicitly declares v as a formal parameter, the oc-
currence of v in the body does not even need translation.
r.attr on the other hand will result in:

(send getattr self)

Indeed, as the proxy is inserted in the delegation chain
of Subject, r is translated to self, which traverses the
same delegation chain again, and the appropriate accessor
for attr will eventually be encountered. The last part of
<impl> ensures that, once the advice has been executed, the
originally intended setter message is sent, by resending the
message further along the delegation chain:

(resend v)

There is a second aspect, called Logger, the single advice
of which causes a logging statement to be output before
getting the value of Subject.attr, but only if this occurs
within the control flow of Subject.changed(). Hence, a
continuous weaving proxy is created with around advice for
Subject.changed():

(insert -proxy Subject)
(define -proxy -send changed <proxy > x

(let (prx (insert -proxy Subject ))
(define -proxy -send getattr prx <impl >)
(remove -proxy _self self)
(resend x)
(insert -proxy _self self)
(remove -proxy Subject prx )))

The dynamic undeployment and redeployment of the cw-
proxy itself is done by means of the two lines surrounding
resend. Here, _self is a pseudovariable available in COLA,
which corresponds to the very object in a delegation chain
which understands the current message. Since an aspect
proxy always implements its own methods, _self points ex-
actly to the cw-proxy, and can be used in order to remove
it from the delegation chain in which it resides, which is
trivially always self.

Once more, execution of the code in Lst. 5 will result in the
number 25 being printed, preceded by exactly one log state-
ment. The aspect-oriented extensions of the iaj language
have, however, provided better modularization, as the defi-
nition of Subject is no longer polluted with implementation
details of the Observer pattern. Additionally, the changed

method no longer needs to be called from the main method,
but is called automatically by means of the after advice.
Mapping these aspect-oriented extensions to our kernel API
proved to be straightforward and simple, demonstrating the
kernel API provides appropriate abstractions.

4.4 The cj Implementation
The last of the languages in the j family is cj. It takes

a layer-based approach to achieve modularization of cross-
cutting concerns. Revisiting the syntax definition in Lst. 3,
two major extensions to j stand out. On the one hand, the
LAYER and CLAYER rules, which introduce layers, and on the
other hand the withlayer and withoutlayer expressions,
which allow for layer activation and deactivation.

Although methods defined in layers are to some extent
comparable to around advice, the main difference is that
they should not be active by default, but only in the dynamic
extent of a withlayer block. Therefore, layer methods are
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1 class Subject {
2 Integer attr
3

4 void setAttr(Integer x) {
5 this.attr := x }
6 void changed(Object x) {
7 out.println(this.attr) }
8 }
9 layer Observer {

10 bool changed
11

12 void Subject.setAttr(Integer x) {
13 thisLayer.changed := x.neq(this.attr);
14 proceed(x);
15 if(thisLayer.changed) { this.changed(null) }
16 else { null } }
17 }
18 class Main {
19 Subject s
20

21 void main (Main x) {
22 x.s := new Subject;
23 withlayer(Observer) {
24 x.s.setAttr (25) } }
25 }

Listing 6: Example cj code

still translated into proxies, but this time the proxies are
not automatically inserted in the delegation chain of the
relevant class object. Instead they are stored in layer objects,
and insertion does not take place until a withlayer block
is entered. At the end of the block, the inverse takes place
and the proxy is removed from the delegation chain again.
Conversely, the withoutlayer block ensures the specified
layer is temporarily deactivated by removing any installed
proxies and reinserting them at the end of the block.

In order to support layers, some mechanisms are intro-
duced on top of the kernel API. define-layer is similar to
define-aspect, but adds a field to the resulting layer ob-
ject, associating proxies generated from methods defined in
the layer, with the classes they apply to. Furthermore, layer
objects do not initially allocate memory for fields, because
layers can be defined in fragments, and hence it is possi-
ble additional fields are declared when another fragment of
the same layer is parsed. Therefore, layer fields are handled
as dynamic field introductions to the singleton layer object,
generating code for the creation of a proxy with memory
for the field’s slot-based accessors, and its insertion in the
delegation chain of the layer object.

Handling the withlayer and withoutlayer is done by the
activate-layer and deactivate-layer functions, which
also are implemented on top of the kernel. They take care of
respectively insertion and removal of the proxies associated
with a certain layer, in the delegation chains of the class
objects the proxies are associated with.

The proceed instruction is handled in the same way as
with around advice, resulting in a resend instruction. This
is not surprising because of the similar treatment of layer
methods and around advice.

An example of cj code can be found in Lst. 6. Parsing the
Observer layer generates

(define -layer Observer)

Next, care is taken of the dynamic introduction of the changed
field into the layer:

(insert -proxy Observer (changed ))

The setAttr layer method is translated into create-proxy,
resulting in a proxy which is not inserted yet, but stored
in the layer object and associated with the name Subject.
The setAttr method is then installed in the proxy:

(define -proxy -send setAttr Subject x <impl >)

The proceed instruction in <impl>, is transformed to

(resend x)

while thisLayer refers to the Observer layer object. Once
more, this can just be translated into self as, upon execu-
tion, the proxy will have been inserted in Subject’s delega-
tion chain.

Execution of the program in Lst. 6 again results in an
output of the number 25. Note how modularization was
improved with a layer-based mechanism this time, yet the
translation process to our kernel API was as straightforward
and simple as with the pointcut and advice flavour.

5. RELATED WORK
Numerous projects have been concerned with the imple-

mentation of run-time environment support for MDSOC,
and AOP in particular.

The first project to introduce VM-level support for AOP
was PROSE [15], which utilized debugger breakpoints as
provided by the Java Virtual Machine Debug Interface to
notify an AOP infrastructure implemented at application
level of join point occurrences.

One of the most important driving forces in the develop-
ment of Steamloom [1, 5] was high performance of woven
code. Hence, not all of the join points were instrumented,
like in 2nd-generation PROSE [16], nor was a debugging in-
frastructure used for programming purposes. Steamloom
has followed a just-in-time (JIT) compiler driven approach
right from the start. Its fully dynamic weaver, meaning
that all weaving steps, including pointcut evaluation, take
place at run-time, instruments only those join point shad-
ows known to (maybe) yield join points. Woven code is
minimal. Where residual logic [10] is required, it relies on
VM-level callbacks for performance. Weaving in Steamloom
is achieved through modifying method bytecodes and JIT-
recompiling them accordingly.

More recent implementations of the PROSE architecture
[11] also feature sophisticated JIT compiler strategies to
achieve performance.

The first projects that were described as general-purpose
AOP kernels were Reflex [18] and Steamloom [5]. Reflex is
based on behavioral reflection and performs load-time prepa-
ration of Java classes based on pre-existing specifications; at
run-time, prepared join point shadows can be subject to dy-
namic weaving. Steamloom features an API-based approach
to aspect definition that can be targeted by compilers for
various languages.

The implementation and language mappings presented in
this paper demonstrate how an AOP kernel can be provided
at the VM level. Admittedly, Steamloom was the first sys-
tem to represent both VM support and the AOP kernel idea,
but as it ultimately is a Java VM, the applicability of its ap-
proach is limited. The same holds for Reflex, which is tied
to the JVM platform, and client languages targeting it.

Conversely, the support kernel for implementations of lan-
guages supporting the modularization and (possibly dynamic)
composition of crosscutting concerns presented in this paper
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is not limited with respect to the choice of client language.
The underlying execution model’s simplicity renders it a vi-
able candidate for wide applicability in the domain of such
languages’ implementations. Entire VMs can be built on
top of it.

The aspect language implementation architecture (ALIA)
project [2], which is a reference architecture for execution
environments for AOP languages, based on a standard exe-
cution model, appears to be the only other approach bring-
ing about similar qualities. However, its reliance on a much
more sophisticated meta-model may place some limitations
on its applicability since a significant modelling effort is re-
quired prior to language implementation. Conversely, the
AOP kernel presented herein allows for a direct mapping of
language mechanisms to lower-level execution mechanisms—
more resembling the way a compiler works.

6. SUMMARY AND FUTURE WORK
We have presented an implementation substrate of a ma-

chine model, supporting language mechanisms for modular-
izing crosscutting concerns. We developed a kernel API,
provided as an instruction set for a dedicated virtual ma-
chine, which served as a compilation target for a number
of high-level programming languages which include mecha-
nisms addressing crosscutting concerns. We showed that a
large subset of relevant language constructs can be mapped
onto this instruction set in a simple and straightforward
manner. As a broad variety of constructs, ranging from
aspects, advice and pointcuts to dynamically scoped and
activated layers were included, we conclude that the ma-
chine model indeed provides a compelling translation target
for languages supporting different programming styles and
modularization features for crosscutting concerns.

Future work will put a strong focus on performance, the
goal being to demonstrate that execution of our instruction
set can be done in an efficient manner. In fact, the na-
ture of the machine model gives multiple opportunities to
develop dedicated optimization strategies for MDSOC lan-
guage implementations—especially regarding object com-
munication through messages, and memory management.
For example, dedicated caching mechanisms may optimize
message sending and delegation chain modifications. Dedi-
cated garbage collection schemes, on the other hand, might
take advantage of the large number of small objects em-
ployed in the model.
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