Exploring Modal Locking in Window Manipulation

Why Programmers Should StasH, DupLICATE, SpLIT, and LiNk Composite Views

Marcel Taeumel
Hasso Plattner Institute, University of Potsdam
Potsdam, Germany
marcel.taeumel@hpi.uni-potsdam.de

ABSTRACT

Window manipulation plays a vital role in multi-tool user inter-
action, especially for programmers exploring software artifacts,
gathering information for better understanding. However, today’s
window managers offer only limited means to organize screen con-
tents, which increases cognitive efforts for both tool builders and
users. Builders must account for live integration of composite views;
users might have to work around disruptive mode errors when ac-
tual tasks conflict with a tool’s design. We follow a pattern-finding
approach and present four new verbs for direct window manipu-
lation, which we consolidated from existing tools and systems. If
window managers would offer to STASH, DUPLICATE, SPLIT, and
LINK views, we believe that programmers could better maintain
flow during exploration activities.

CCS CONCEPTS

«» Software and its engineering — Integrated and visual de-
velopment environments; Patterns; Object oriented development;
« Human-centered computing — Interface design prototyping.

KEYWORDS

Program comprehension, window management, direct manipula-
tion, tool building, exploration, interface design

ACM Reference Format:

Marcel Taeumel and Robert Hirschfeld. 2021. Exploring Modal Locking
in Window Manipulation: Why Programmers Should STAsH, DUPLICATE,
SpL1T, and LiNk Composite Views. In Companion Proceedings of the 5th
International Conference on the Art, Science, and Engineering of Programming
(<Programming> "21 Companion), March 22-26, 2021, Virtual, UK. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3464432.3464433

1 INTRODUCTION

Think about what you see. Write down a thought. Click on that label
to browse. Branch, merge, and backtrack. While comprehending
programs, programmers constantly estimate the cost of switching
between exploration paths. They have to guess which paths lead
to valuable information, and which ones are a waste of time. The
theory on information foraging [6, 22] suggests that programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

<Programming> "21 Companion, March 22-26, 2021, Virtual, UK

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8986-0/21/03...$15.00
https://doi.org/10.1145/3464432.3464433

14

Robert Hirschfeld

Hasso Plattner Institute, University of Potsdam
Potsdam, Germany
robert.hirschfeld@hpi.uni-potsdam.de

L Vwork g — >

Discard
unsaved changes?

[] Active P72 Inactive i -- Window
window window ~Zi Component

Figure 1: A good start. Modal (confirmation) dialog, blocking
only one of the environment’s available (tool) windows. But
how to avoid modal locks among window components?

tools are especially helpful when they offer cues that help making
such decisions. Looking at the entire programming environment,
there is a combination of tools (and tool windows) forming that
exploration path, offering tempting cues, hosting informational
prey. And every tool switch will be costly if it interrupts the current
task [21, 24] with new information, new visuals, or new ideas. But
what about exploring familiar things such as when backtracking or
assessing the current goal’s overall progress? That must be cheap;
it is a matter of effective window management.

Unfortunately, today’s window managers provoke superfluous
decision-making, which interrupts the programmer’s flow of ex-
ploration [4]. As depicted in Figure 1, even for easily reversible (or
“undo-able”) gestures such as closing a view, environments expect
users to confirm the loss of unsaved work. While there usually is a
“trash bin” (or command history) for domain models, uncommitted
changes in application models have no such safety net. For example,
users can easily revert changes in a text file (or paragraph), but
trying to close a document’s view may be rewarded with a blocking
“Are you sure? There is no going back” This conceptual nuisance
can propagate into a window’s components, where browser views
are locked until the programmer finishes (i.e., commits!) the current
edits. That is, exploration tools can be modally locked [26, pp. 37—
47] as soon as programmers start writing (unpolished) thoughts
into a nearby text field. Such modal locks negatively affect costs
and cost estimation in the underlying exploration activity.

https://orcid.org/0000-0002-7559-6035
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3464432.3464433
https://doi.org/10.1145/3464432.3464433

<Programming> 21 Companion, March 22-26, 2021, Virtual, UK

) System Browser: Morph (vX+]
Morphic-Collection Morph creation + drawOn;
Morphic-Demo BorderedMorph | debug and other + drawOv
Morphic-Events MorphicModel | dispatching i# drawRol

| HandMorph drawing

MorphExtension || drop shadows

TheWorldMainDg | dropping/grabbing
_ TheWaorldMenu||e-toy support

Morphic-Explorer
Morphic-Kernel
Morphic-Layouts

s drawsubmorrk
expandFullBod
expandFullBot

self visible ifFalse: [~ self].
self halt.

(aCanvas isVisible: self fullBounds) ifFalse:[*self].

(self hasProperty: #errorOnDraw) ifTrue:["~self drawErrorOn: aCanvas].
"Note: At some point we should generalize this into some sort of
multi-canvas so that we can cross-optimize some drawing operations."

"Pass 1: Draw eventual drop-shadow"
self hasDropShadow ifTrue: [self drawDropShadowOn: aCanvas].

mt 4/10/2015 15:13 - drawing - 9 implementors - in no change set -

Morphic-Menus flashBounds
Morphic-Menus-De | L €3 Please Confirm v & fullDrawOn:
Morphic-Pluggable hasClipSubmo

P 99 |] Changes have not been saved. pﬁ
E Is it OK to cancel those changes? j jesoucely
fullDrawOn: aCanval

Yes (
"Draw the full Mg o

)

Marcel Taeumel and Robert Hirschfeld

1

x -0 Morph>>drawSubmorphsOn:
¥ [Morphic-Con® [Morph debugand © ~ drawOn:

~

Announcen =i BorderedMor deferredm ¥ drawSubmorphsOn:
Borders =1 HandMorph display expandFullBoundsFo
Events) MorphExtensio drawing flashBounds
Kernel dropshado ~ fullDrawOn:

v dropping/g., hasClipsubmorphsst .,

@ All Packages O ScopedView | @ Flat O Hier. | @ Inst.side O Class side

! *fullbrawon: % Y drawSubmorphsC X DA« ~
drawSubmorphsOn: aCanvas | o -

"Display submorphs back to front

| drawBlock |

submorphs isempty ifTrue: [fself].

drawBlock := [:canvas | submorphs reverseDo: [:m |
canvas fullDrawMorph: m]].

self clipSubmorphs
11001

v

% 2 drawing || extension L] F +L W

Figure 2: Modal lock in a code browser. (1) After adding (not saving) “self halt” to the method fullDrawOn: and clicking
on drawSubmorphsOn:, (2) Squeak 5.3 (left) requests confirmation while Pharo 8.0 (right) does not block; it embeds a new tab.
Programmers in Squeak get used to duplicating the window first to not discard work.

Given that programmers cannot decide on committing or discard-
ing informational prey while still gathering:

How can the environment’s window management sup-
port a programmer’s train of thought during explo-
ration?

We assume that programmers will manually interact with tool
windows (or any view container) when projecting their thoughts
(and level of understanding) into the environment, onto the screen.
Consequently, we are not looking for automatic reduction of friction.
Instead, we are questioning the current way of interacting with
windows, which is unnecessarily indirect and increases cognitive
load. We are looking for new gestures that support programmers in
directly manipulating [11] windows to immediately mirror updates
from their mental model [23, pp. 12-17][16].

In this paper, we propose four new verbs that should support
programmers managing screen contents through visual containers:
STASH, DUPLICATE, SPLIT, LINK. The environment should log each
such interaction to also offer a flexible unpo and REDO. Following a
pattern-finding approach [8], we justify our proposal by presenting
known uses in existing systems, each offering some of these verbs.
Our approach is obviously inspired by the historical efforts that
enabled “modeless” text editing as cut/copy/paste gestures through
keyboard shortcuts [15, 28, 33]. We aim at a comparable experi-
ence for (manual) window management, which can also guide tool
builders to design modular application models that can anticipate,
maybe avoid, modal locking.

Note that we present a first draft of what might be-
come a pattern language around window manipulation.
Given our focus on composite tools and modal locking,
our presentation thus deviates from the usual pattern
form [1, 7, 8]. Following this paper’s theme, we combine
the descriptions of all verbs’ intents, known uses, and
consequences side-by-side instead of separated per verb.

In section 2, we clarify our vocabulary and explain how mode
issues are different between domain models and application models.
Our main contribution lies in section 3, where we describe the four

15

new verbs and which existing systems already implement some of
them. There are related attempts only addressing the domain model,
which we discuss in section 4, including concerns on extensive
logging and visual clutter. We conclude our thoughts in section 5.

2 STATEFUL MODELS IN TOOLS

In this section, we explain our perspective on programming tools be-
ing implemented as domain models and applications models, which
glue interactive graphics to invaluable data-under-exploration. Fig-
ure 2 illustrates an example for modal locking in an hierarchical
code browser.

Note that a tool’s technical artifacts (i.e., classes/methods) may
serve either model or both, which affects modular decomposi-
tion [20, pp. 39-64]. The command history for a domain model
(e.g., text undo) is typically closely coupled to the view (e.g., text
field) and thus the application model, which also holds other state
(e.g., text selection).

We think that distinguishing between two (kinds of) models does
not indicate that language constraints or implementation details
are leaking upwards. Instead, a program’s design should always
account for (1) a suitable representation of domain artifacts in
terms of a language’s primitives and (2) a configurable mapping of
artifact properties in terms of a system’s (or application’s) inter-
active visuals. At best, this conceptual dualism would be realized
by clearly separating the roles as distinguished technical artifacts.
There are simplifications of this dualism, such as by limiting (almost
hard-coding) the application model [25], but the underlying design
challenge remains.

2.1 “Modeless” Domain Models

Many tools represent their primary domain-artifacts in a way that
supports direct manipulation [11]. Think about paragraphs on a
text page, pixels in a photograph, lines in a drawing, shapes on a
presentation slide, or cells in a spreadsheet. In all these examples,
users can click on (and maybe select multiple) such representations
to then invoke (reversible) operations (or verbs [26, pp. 59-62]),

Exploring Modal Locking in Window Manipulation

which usually includes cut/copy and paste to re-structure contents.
This level of directness often embraces experimentation through
a complementary undo/redo log. We can find comparable safety
nets in tools for the programming domain, too. Even if not file-
based but still textual, code artifacts are typically under version
control. In live-programming systems such as Squeak/Smalltalk [2],
fine-granular logging [29] can facilitate inadvertent recovery, while
transactional changes [19] can render the feedback loop more ro-
bust. In any case, there is no modal dependency between such direct
edits when domain models shine through the tool’s user inter-
face [25] as distinguished views representing particular domain
artifacts. The interaction feels “modeless” and directly supports the
user’s train of thought.

By definition, it is not modal locking when the current state of a
domain artifact prohibits certain operations. Such circumstances
are part of the domain rules (i.e., model) and hence do not impede
(or block) but drive the user’s workflow. For example, if there are
no red pixels on a drawing canvas, the user has (most likely) no
intention in performing a flood-fill selection on red pixels. Con-
sequently, when users commit changes to the domain model, the
tool’s (graphical) interface does not enter a specific mode. In self-
sustaining programming systems, tool builders have to bear the risk
of breaking the tools they are currently using. Yet, locking yourself
out of the tools by accident will trigger a need for recovery, not a
switch between built-in modes.

Note that there is often more than one view per domain artifact,
each varying in directness, conciseness, expressiveness, or config-
urability. It is the responsibility of application models to provide the
means for selecting, configuring, and interacting with such views.
With that role comes one of the major challenges around interface
modes and modal locks.

2.2 Modal Application Models

Given that domain models represent the current state of domain
artifacts, application models manage the rest of a tool’s graphical
interface. Think about the bounds of windows, offsets in viewports,
slider positions in scrollbars, or selections in list views. Users will
constantly modify such stateful, visual composites when interacting
through mouse clicks, key strokes, or touch gestures. Yet, also
consider unsaved contents in a text field or the not-yet-committed
state of a checkbox. The most recent part of the domain model’s
undo/redo log is typically managed by the application model. Only
committed changes leave a tool’s realm and are then logged through
a shared mechanism so that other tools in the environment can
participate. For example, files will only get a new version once
the text editor has written new contents, which does usually not
happen per typed character!

As exemplified in Figure 2, modal locks disrupt the user’s flow.
Modal dialogs try to soften such locks but remain disruptive be-
cause they call for often impossible decisions. We claim that no
user really wants to discard recent efforts but expects the tool’s
ongoing, oblivious support. Composite views try to integrate com-
mon workflows, yet quickly grow in complexity of what is possible.

! Auto-save can mitigate this issue if (1) users will not be noticeably interrupted and
(2) artifact changes will never trigger unwanted side effects, both of which are open
challenges in Squeak/Smalltalk.

16

<Programming>"21 Companion, March 22-26, 2021, Virtual, UK

Especially such browse-and-edit arrangements must account for
users starting to edit. How to deal with not-yet-committed contents
when starting to browse again?

Looking at existing systems, we realized that there are already
best practices for tool designers to accommodate more complex
multi-tool scenarios. For example, manually tracing and repeating
one’s interactions can be hard and annoying, which yields - in
critical places — confirmation dialogs or non-disruptive attempts
such as new windows (or tabs) popping up. Candid experimen-
tation embraces failure; loss of work would be demoralizing. For
another example, browsing a deeply structured domain can be time-
consuming, which makes a navigation history grow as users explore
a path. Finally, there are tool designs that acknowledge breaks be-
tween working days, which allows users to shutdown the working
environment and then come back the next day to find all windows
as they were the day before.

But how can tool designers support (incidentally) complex sce-
narios without bearing the risk of unforeseen modal locks? We
think that the environment should give users more power over view
compositions, which entails a more direct way of integrating (or
separating) application models. Inspired by the “modeless” interac-
tion with domain models through (undo-able) cut/copy-and-paste
gestures, we want to encourage users to reduce friction losses by
manually opening up modal locks as they occur — not having to dis-
card unsaved work, not even be asked about it. Most importantly,
they should be able to separate (or integrate) browsers and edi-
tors. Once part of the tool’s interface, users could non-disruptively
explicate their intents about exploration and note taking.

3 DIRECT WINDOW MANIPULATION

In this section, we propose a more direct way for manipulating
composite views (or tool windows) so that users can resolve modal
locks themselves. We assume that programmers are prevalent in
our target audience since manual re-composition might require
a willingness for experimenting with one’s work efficiency. And
tool-constructing programmers would enable our proposal in the
first place.

First, we will follow the concept of noun-verb interaction [26,
pp. 59-62] and present four new verbs for window manipulation,
including their relation to the established ones: OPEN, CLOSE, cOL-
LAPSE, and EXPAND. Second, we will describe which of our proposed
verbs existing systems already offer, some of them successfully for
decades.

3.1 The New Verbs

Basically all of the following operations should be logged and easily
reversible. While this requirement would likely increase the envi-
ronment’s resource consumption, it would make user actions feel
forgiving and hence encourage experimentation. The new verbs are
as follows; we list alternative names to establish a possible relation
to familiar concepts:

StasH. De-prioritize contents in a view and remove the vi-
sual container to make room on screen. Unsaved changes
are not deleted but out of the user’s sight. Reverting this
operation will make the container reappear as is, including

<Programming> 21 Companion, March 22-26, 2021, Virtual, UK

view-specific state such as text selection or scroll position.
Alternative names could be CLOSE, HIDE, COLLAPSE, or DIS-
CARD.

DupLIcATE. Branch the exploration path to follow up on a
new idea by getting two identical representations of the same
scenario on screen. Further interaction with the copy will
make its visual appearance diverge. Reverting this operation
will simply sTasH the “duplicate” in its most recent form.
Alternative names could be cOPY, MULTIPLY, Or MIRROR.

SPLIT. Re-use a window’s component in a different context
by visually and semantically separating it from its current
neighbors. Users can then LINK it to another component or
STASH and DUPLICATE at a more fine-granular level. Revert-
ing this operation will simply LINK the component again.
Alternative names could be CUT, PARTITION, DISCONNECT, Or
DIVIDE.

LINK. Re-use (an already spLIT) component in a different con-
text by visually and semantically integrating it into its neigh-
bor windows. Users can populate existing views with new
data coming from freshly linked exploration paths. Alterna-
tive names could be PASTE, GLUE, JOIN, or CONNECT.

Tools and their views would oPEN as usual through button clicks
or keyboard shortcuts. Users would naturally resize (or EXPAND)
views to accommodate the available screen space among other tools.
Now, making room on the screen would be different: users could
choose to (a) sTASH a tool’s entire view composition or (b) SPLIT it
up first to only hide obsolete parts to not inadvertently increase
cognitive load. Since these operations should be reversible, there
would be no confirmation dialog blocking the user’s flow when they
would hit a cLosE button. They already know this kind of safety
net from hitting a cOLLAPSE (or MINIMIZE) button. Thus, we think
they could easily adapt to this new behavior.

The verbs spLIT and LINK challenge the degree of modularity [20,
pp- 39-64] in the affected application models’ design. Tool builders
would have to establish a direct mapping between domain artifacts
and visual representations (like Naked Objects [25]). When users
would try to integrate or separate nearby windows, the underlying
mechanics (or technical artifacts) would need to follow clearly
defined rules of composition and decomposition. We already found
a possible architecture for purely object-oriented systems (such
as Squeak/Smalltalk) in the form of VIvipe [30, 32], which is a
data-driven, script-based, interactive tool-construction framework.
There might be other approaches to realize the verbs spLIT and
LINK.

3.2 Known Uses

While we think that our proposal for direct window manipulation
is novel in its packaging, we did derive those verbs from existing
systems. Following the design-patterns community [8], we thus
summarize our original observations (as depicted in Figure 3) to
further substantiate feasibility and applicability.

In virtually any window manager, users can (kind of) STASH vi-
sual containers. There is usually a COLLAPSE (or MINIMIZE) operation
for overlapping layouts or a sTaCk operation for tile-based layouts.
Both variants then offer (button-like) tabs in a row so that users can
easily retrieve the hidden content. As an example for sTACK, there

17

Marcel Taeumel and Robert Hirschfeld

System Browser: Mor)

[Mor X -Collection i & creatiolle; & drawS@eRbrp @
Morpiic-| : \
mg:g::i‘ © System Browser: Morph ooe
Morphicd | Morphic-Collection [“'Morph | |/ creation & drawSubmorpf
Morphic-| |Morphic-Demo] BorderedMorg || debug and other expandFullBou
Mot @i | Morphic-Events] MorphicMod; ||dispatching expandFullBou 2Q
A, Morphic-Explorer] HandMorph drawing | flashBounds
browse | | Morphic-Kernel MorphExtensio| ||drop shadows * 1) GtullDrgwon:
fullDraw Morphic-Layouts TheWorldMainC || dropping/grabbin hasClipSubmor
Morphic-Menus T 1| e-toy suppo hide
"Dra umgk;,— Maniie De .mf. ..,?.?.u;.... IL_hiahlinhtadFarl |
@ || browse |[senders |[implemen | versions |[inheritanc || hierarchy || vars | (" source)

=<7V fullDrawOn: aCanvas

?eg; "Draw the full Morphic structure on the given Canvas"
a
(selfl| self visible ifFalse: [~ self].
mt “a), self halt. o
e (aCanvas isVisible: self fullBounds) ifFalse:[~self].

(self hasProperty: #errorOnDraw) ifTrue:[~self drawErrorOn: aCanvas].
| mt 4/10/2015 15:13 - drawing - 9 implementors - in no change set -

e System Browser: Morph 2

OPEN FILES sqWin32Window.c sqPlatformspecifich % sqWin32Threads.c

sqWin32Window.c 1 |/* win32 sqPlatformSpecific.h -- Platform-spe:
sqWin32Threads.c 2
3 /* How to use this file:
FOLDERS 4 This file is for general platform-specific
win32 5 The goal is to keep most of the other heac
o 6 To override a definition or macro from s
. 7 provide the new definition.
s
util 10
Nl 11 #ifndef _SQ PLATFORM_SPECIFIC_H
/% configh 12 #define
/% mousewheel diff 13
/% sqConfigh 14 #if WIN32 || _WINe4
/% sqGnuh 15 /* Override necessary definitions */

16 #undef putchar
17 #include "sgWin32Alloc.h"

» quIaﬁormSTﬁiﬁ‘ 18
sqWin32h

sqWin32Alloc.c

/% sqlmageFileAcces

N

20 #ifdef
#include <Windows.h>

sqWin32Alloch 21

X System categories { [,‘,‘ = X References to Classes: Mc

> selectionBackground

Morphic-Collections-Arrayed
Morphic-Demo
Morphic-Events
Morphic-Explorer
Morphic-Kernel
Morphic-Layouts
Morphic-Menus

i

1BorderedMorph
= MorphicModel
1HandMorph
MorphExtension
TheWorldMainDockingBar
TheWorldMenu

> - areasRemainingToFill:
drawErrorOn:

~ v drawRolloverBorderOn:

Color

ColorForm

X Artifacts: fullDrawOn: (Morph Outline: Morph (Morphic
= ~ drawDropHighlightOn:
phsOn: aCanvas =X incategory (h... v 7 @ [&y N
"Display submorphs back to front" - :::vxg:;pér:‘édowon.
| drawBlock | drawKeyboardFocuslindicatic
submorphs isEmpty ifTrue: [~self]. drawMouseDownHighlightOr
drawBlock := [:canvas | phs reverseDo: [:m | canvas fullD ph: mIl. ~ drawOn:

self clipSubmorphs
ifTrue: [aCanvas clipBy: self clippingBounds during: drawBlock]
iffalse: [drawBlock value: aCanvas]
fullDrawOn: aCanvas
“Draw the full Morphic structure on the given Canvas"

self visible ifFalse: [~ self].
self halt.
(aCanvas isVisible: self fullBounds) ifFalse:[~self].

~ drawOverlayOn:

fu drawRolloverBorderOn:

~ drawSubmorphsOn:
expandFullBoundsForDropSt

~ expandFullBoundsForRollove
flashBounds

~ fullDrawOn:
hasClipSubmorphsString
hide
highlightForMouseDown

(self hasProperty: #errorOnDraw) ifTrue:[~self drawErrorOn: aCanvas].

“Note: At some point we should aeneralize this into some sort of (L PR

Figure 3: Squeak (top) can pupLICATE all kinds of morphs,
including tool windows and models. Sublime Text (middle)
does implicitly LINK and sPLIT between file list and file
contents. VIVIDE (bottom) offers an explicit way for view
(de-)composition.

is a sketch in Figure 1, complemented through browse-and-edit
combinations in Pharo (Figure 2) and Sublime Text (Figure 3). As
an example for coLLAPSE, the window managers in Squeak and
Pharo each behave as generalized, while Sublime Text depends
on the operating system’s manager. Yet, we argue that the typical
CLOSE button does not invoke a STASH operation because it is not
reversible, which makes it disruptive. We think that there is no

Exploring Modal Locking in Window Manipulation

need for such manual “garbage collection,” which we discuss later
in this paper.

A DUPLICATE operation for visuals has been around since the
conception of Self’s Morphic [18] and its adaptation for Squeak [17,
31]. Every morph offers this verb in a meta-menu, called halo, as
depicted in Figure 3. In their simplest form, morphs are like shapes
in presentation tools (such as PowerPoint). Yet, morphs are not
just structural composites, they can exhibit any complex behavior.
Being integrated in a Smalltalk system [9, 13, 14], morphs can
represent any kind of interactive view (or window). Unsurprisingly,
users can DUPLICATE not only visual structure but also a tool’s
behavior-driving configuration, which corresponds to a deep copy
of the application model. Like users cut/copy-and-paste shapes on
presentation slides, programmers in Squeak naturally duplicate
windows to handle modal locks in browse-and-edit tools (Figure 2).

We think that, in most cases, when a window does SPLIT or LINK
its components, users do not notice — and should not care by design.
As exemplified” through the Sublime Text editor in Figure 3, users
can browse file contents in the same container until they start to
edit. Any existing container in edit mode cannot be re-purposed
for browsing (mode) but only closed. While this might be okay
for simple widgets such as text fields, we argue that effortfully
configured views deserve longer lifetimes. Programmers might
want to try out those views with different kinds of data. In VIvIDE,
we experimented with explicitly connecting and disconnecting
views as means for switching between exploration paths. In many
cases, the end of a path was represented through one of many
selectable and configurable views. For new paths, closing those
views would mean that programmers must repeat redundant steps
because the default view may not be supportive. Consequently,
we think that an environment with many different views should
offer the verbs spLIT and LINK as part of basic user-to-window
interaction.

4 DISCUSSION

In this section, we discuss known workarounds for missing verbs,
current struggles with naming the verbs, and potential consequences
when realizing all verbs in a single environment.

4.1 Anti-patterns and Workarounds

Through Figure 2 and Figure 3, we illustrate that programmers
in Squeak can work around the missing spLIT (and confirmation
dialogs) by duplicating the windows of interest. In general, many
environments somehow “compensate” for “missing” verbs, which
typically interrupts the programmer’s train of thought and hence
increases the cognitive load during exploration. Especially the ab-
sence of “undo” demands mental simulation of critical steps.

If there is no STASH operation, users can often MINIMIZE, COL-
LAPSE, or STACK windows (or views) to make room for other infor-
mation. If that is still too effortful, a layout of overlapping windows
is typically forgiving when users just leave it be, letting tools fade
into the background, slowly forgetting about them.

2Many file-oriented, text-based programming environments offer a similar browse-
and-edit interface, such as Eclipse, Intelli] IDEA, and Visual Studio.

18

<Programming>"21 Companion, March 22-26, 2021, Virtual, UK

If there is no DUPLICATE operation, users can often manually re-
open and re-configure tools until their appearance matches the orig-
inal. Yet, multiple views per domain artifact require non-exclusive
access to domain artifacts and a way to communicate changes
triggered from outside a particular view. While many (read-only)
exploration tools anticipate such outside changes, two loggers that,
for example, are appending contents to the same file would be in
conflict.

If there is no SPLIT or LINK operation, users can choose to ignore
or re-purpose parts of a tool’s composite views. Yet, having multiple
instances of the same tool with redundant information is a waste
of screen space. Manually “linking” information between tools
typically involves copy-and-paste (text) or drag-and-drop (objects),
which can also be time-consuming and error-prone.

4.2 Naming the Verbs

When documenting best practices in pattern form, a pattern’s name
serves as a concrete handle to refer to and talk about with field
experts. Unfortunately, finding good names for our verbs can be
challenging. Short names typically have an established meaning
and thus might entail inappropriate co-notations. Longer names (or
even descriptions) might not be suitable as reference point. Since
the pattern language in this paper is considered a “draft,” we are
still looking for good names.

Looking at sTasH (and its alternatives), we are concerned about
negative co-notations and a conflict of meaning with well-known
operations. First, using stashed changes in version control (e.g., Git)
might too often lead to a situation where almost forgotten work
cannot be easily applied to a project’s current form. Also negative,
the alternative DISCARD might be associated with the loss of work.
Second, the common operations CLOSE and COLLAPSE are quite
similar to what sTAsH intents to cover. Re-using those names with
extended meaning might be elegant yet confusing; expecting users
to learn that “stasH also means cLoSE” might be too troublesome
to accept.

Looking at DUPLICATE, our proposed alternatives might not fit
the domain or scope of window manipulation. First, MULTIPLY is
a math operator and not associated with making copies. Second,
a MIRROR might be expected to turn things upside down. Finally,
the effect of DUPLICATE or coPY is expected to fade quickly as users
directly manipulate the result when continuing exploration. Maybe
there are names that better reflect the timeliness and intent of not
having to repeat prior steps to revise certain choices. Squeak uses
the name sPAWN to extract changes of one tool into a new one,
cleaning up the original one.

Looking at spLIT, there are tools that support duplicating a win-
dow to gain two independent viewports, effectively splitting the
original screen space. For example, Emacs text buffers or file views
in other text-based environments can be split this way to look
at multiple (distant) sections that would otherwise not fit on the
screen. Our intention of splitting is more like a cuT through a view
composition to re-purpose sub-views.

Looking at LINK and spPLIT, we wonder whether all verbs around
window manipulation should occur in opposing pairs. Our first
impression was, that a generic uNDo should be the opposite of any
operation. Yet, every cLOSE had its oPEN. And what about a DE-
DUPLICATE to clean up a messy desktop without losing work? For

<Programming> 21 Companion, March 22-26, 2021, Virtual, UK

manipulating view compositions, we collected many alternatives
in pairs: ATTACH/DETACH, COUPLE/DECOUPLE, LINK/UNLINK, and
INTEGRATE/EXTRACT.

4.3 Consequences

Reversible cLOSE operations are typically implemented by logging
the identifier for a particular domain artifact, which excludes un-
saved changes. For example in many text editors, users can retrieve
efforts through a list of recently-opened file paths. In web browsers,
for another example, users can UNDO closing a tab, but the web
page’s contents will be re-loaded from the URL, which represents
already committed domain data® In such sophisticated browsers
for structured information, successively touched artifact identifiers
are often logged into a navigation history. The environment might
keep that history across multiple sessions. Yet, users can still not
mix note taking and wanting to sTASH windows with uncommitted
changes, because a disruptive dialog will ask for discarding those
changes. They must plan ahead.

However, extensive logging would raise concerns about resource
consumption and data privacy. In Squeak, it is rather easy to hold
on to the objects that represent application models. Given that
there is memory paging and enough disk space, a strategy such as
least-recently-used could not only de-emphasize visuals [27] but
also clean up hidden, tool-specific “trash bins” automatically. After
the right amount of time, users may just have moved on and saved
the changes they actually wanted to commit. But maybe users get
anxious about unfinished thoughts sitting around somewhere in a
cache, waiting to be exposed. If the click on a cLosE button would
not immediately discard a text buffer’s confidential contents, users
might require complementary tools like there is “securely delete”
for files.

Given that we advocate the DUPLICATE verb, we want to finish
this discussion with a brief (hypothetical) look on cluttered screens.
Programmers often need more screen space than they have avail-
able to lay out all relevant information. Overlapping windows can
be annoying to constantly re-arrange; a CLOSE ALL button might
be too careless and potentially costly. A layout strategy with tiles
(e.g., Eclipse, Intelli] IDEA, Visual Studio) looks neat and tidy, but
often hides too much information in stacks. We see (virtually) end-
less tapes [3, 5, 10] as a good fit for onward exploration; the path
can deepen horizontally and branch vertically. Yet, a full-screen
viewport has no visually stable content (i.e., pixels) when scrolling
(or zooming) back-and-forth. A combination of overlapping tapes
could be a step forward. Programmers could then flexibly manage
multiple exploration paths.

5 CONCLUSIONS

We explained our perspective on multi-tool environments as a plen-
itude of domain models and application models, which glue interac-
tive graphics to data-under-exploration. We argued that tool users
should be empowered by manipulating windows (or any visual
container) through the (often novel) operations STASH, DUPLICATE,
SPLIT, and LINK to work around occasional, yet disruptive, modal
locks. We think that tool builders cannot anticipate all possible,

3Note that cookies might configure page loading with (transient) information from
the current session.

19

Marcel Taeumel and Robert Hirschfeld

complex scenarios for integration and should thus follow a more
generic approach. Leave it to the users, which are programmers in
our case, because they are probably immersed into their task and
do not expect to be patronized through superfluous interruptions.
Instead, make window management more open and configurable
- yet safe — so that users can learn to efficiently accommodate
domain-specific tasks.

We did not stress our analogy to cut/copy-and-paste gestures.
There must be some kind of “trash bin” for stashed windows. But
should there be a “clipboard” for components that were copied
or cut out? From personal experience [30], we know that flexible
view composition can feel direct and non-disruptive by just doing
a click-and-drag, completed with a drop. Yet, with fidgeting fingers
on a cluttered screen, a simple cut-and-hide might be more user
friendly.

Overall, we see more potential for investigating better interaction
paradigms for window-based exploration environments. Regarding
this “draft” of a pattern language, a valuable next step would be
to validate our proposed verbs in a user study to let field experts
check their personal experience [12]. Then, each pattern’s name,
intent, known uses, consequences, and relation to other patterns
could be clarified.

TOOLS AND SYSTEMS

In this paper, we presented arguments and screenshots based on the
following tools and systems, which we all accessed on 2021-02-10:

Squeak 5.3 (https://www.squeak.org/)

Pharo 8.0 (https://www.pharo.org/)

Sublime Text 3.1.1 (https://www.sublimetext.com/)
Vivide 2021-02-10 (https://github.com/hpi-swa/vivide/)

ACKNOWLEDGMENTS

Sincere thanks go to all PX/21 reviewers and workshop partici-
pants, who provided valuable feedback by discussing this topic
thoroughly. We gratefully acknowledge the financial support of the
HPI Research School “Service-oriented Systems Engineering” (https:
//hpi.de/en/research-schools/hpi-sse.html) and the Hasso Plattner
Design Thinking Research Program (https://hpi.de/en/dtrp/).

REFERENCES

[1] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo Angel. 1977. A Pattern Language - Towns, Buildings,
Construction. Oxford University Press. ISBN 978-0-19-501919-3.

[2] Oscar Nierstrasz Damien Pollet Damien Cassou Marcus Denker Christoph Thiede
Andrew Black, Stéphane Ducasse and Patrick Rein. 2020. Squeak by Example (5.3
ed.). lulu. ISBN 978-1-716-26297-5.

[3] Andrei Chis, Oscar Nierstrasz, Aliaksei Syrel, and Tudor Girba. 2015. The
Moldable Inspector. In 2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!) (Pittsburgh,
PA, USA). ACM, 44-60. https://doi.org/10.1145/2814228.2814234

[4] Mihaly Csikszentmihalyi. 2008. Flow: The Psychology of Optimal Experience.
Harper Perennial Modern Classics. ISBN 978-0-06-133920-2.

[5] Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and Steven P. Reiss.
2012. Debugger Canvas: Industrial Experience with the Code Bubbles Paradigm.
In 2012 34th International Conference on Software Engineering (ICSE) (Zurich,
Switzerland). IEEE, 1064-1073. https://doi.org/10.1109/ICSE.2012.6227113

[6] Scott D. Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. 2013. An Information Foraging
Theory Perspective on Tools for Debugging, Refactoring, and Reuse Tasks. ACM
Transactions on Software Engineering and Methodology (TOSEM) 22, 2 (3 2013),
14:1-14:41. https://doi.org/10.1145/2430545.2430551

https://www.squeak.org/
https://www.pharo.org/
https://www.sublimetext.com/
https://github.com/hpi-swa/vivide/
https://hpi.de/en/research-schools/hpi-sse.html
https://hpi.de/en/research-schools/hpi-sse.html
https://hpi.de/en/dtrp/
https://doi.org/10.1145/2814228.2814234
https://doi.org/10.1109/ICSE.2012.6227113
https://doi.org/10.1145/2430545.2430551

Exploring Modal Locking in Window Manipulation

=i

(8]

[9

[

[10

[12]

(13

[14

[15]

[16]

[17]

[18]

[19]

[20]

[21

[22]

[23

[24

[25]
[26]

[27]

[28]

[29]

[30]

Richard P. Gabriel. 1996. Repetition, Generativity, and Patterns. In Pattern Lan-
guages of Program Design 2. Addison-Wesley, ix—xiii. ISBN 978-0-201-89527-8.
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Abstraction of Reusable Object-oriented Software. Addison-Wesley. ISBN
978-0-201-63361-0.

Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and its
Implementation. Addison-Wesley. ISBN 978-0-201-11371-6.

Austin Z. Henley and Scott D. Fleming. 2014. The Patchworks Code Editor:
Toward Faster Navigation with Less Code Arranging and Fewer Navigation
Mistakes. In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (Toronto, ON, Canada). ACM, 2511-2520. https://doi.org/10.1145/
2556288.2557073

Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. 1985. Direct
Manipulation Interfaces. Human-Computer Interaction 1, 4 (12 1985), 311-338.
https://doi.org/10.1207/s15327051hci0104_2

Takashi Iba and Taichi Isaku. 2016. A Pattern Language for Creating Pattern
Languages: 364 Patterns for Pattern Mining, Writing, and Symbolizing. In Pro-
ceedings of the 23rd Conference on Pattern Languages of Programs (PLoP). 1-63.
https://doi.org/10.5555/3158161.3158175

Daniel H. H. Ingalls. 2020. The Evolution of Smalltalk: From Smalltalk-72 Through
Squeak. In Proceedings of the 4th ACM SIGLAN History of Programming Languages
Conference (HOPL IV). ACM, 1-101. https://doi.org/10.1145/3386335

Daniel H. H. Ingalls, Ted Kaehler, John H. Maloney, Scott Wallace, and Alan C.
Kay. 1997. Back to the Future: The Story of Squeak, a Practical Smalltalk Written
in Itself. In Proceedings of the 12th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications (Atlanta, GA, USA). ACM,
318-326. https://doi.org/10.1145/263700.263754

Jeff Johnson, Teresa L. Roberts, William Verplank, David C. Smith, Charles H.
Irby, Marian Beard, and Kevin Mackey. 1989. The Xerox Star: A Retrospective.
IEEE Computer 22,9 (9 1989), 11-26. https://doi.org/10.1109/2.35211

Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental
Models: A Study of Developer Work Habits. In Proceedings of the 28th International
Conference on Software Engineering (Shanhai, China). ACM, 492-501. https:
//doi.org/10.1145/1134285.1134355

John H. Maloney. 2002. An Introduction to Morphic: The Squeak User Interface
Framework. Prentice Hall, Chapter 2, 39-67. ISBN 978-0-13-028091-6.

John H. Maloney and Randall B. Smith. 1995. Directness and Liveness in the
Morphic User Interface Construction Environment. In Proceedings of the 8th
Annual ACM Symposium on User Interface and Software Technology (Pittsburgh,
PA, USA). ACM, 21-28. https://doi.org/10.1145/215585.215636

Toni Mattis, Patrick Rein, and Robert Hirschfeld. 2017. Edit Transactions: Dy-
namically Scoped Change Sets for Controlled Updates in Live Programming.
The Art, Science, and Engineering of Programming 1, 2 (4 2017), 13-1-13-32.
https://doi.org/10.22152/programming-journal.org/2017/1/13

Bertrand Meyer. 1998. Object-oriented Software Construction (2 ed.). Prentice Hall.
ISBN 978-0-13-629155-8.

Yoshiro Miyata and Donald A. Norman. 1986. Psychological Issues in Support of
Multiple Activities. In User Centered System Design: New Perspectives on Human-
Computer Interaction, Donald A. Norman and Stephen W. Draper (Eds.). Lawrence
Erlbaum Associates, Inc., 265-284. ISBN 978-0-89859-872-8.

Tahmid Nabi, Kyle M. D. Sweeney, Sam Lichlyter, David Piorkowski, Chris Scaffidi,
Margaret Burnett, and Scott D. Fleming. 2016. Putting information foraging
theory to work: Community-based design patterns for programming tools. In 2016
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
129-133. https://doi.org/10.1109/VLHCC.2016.7739675

Donald A. Norman. 2002. The Design of Everyday Things. Basic Books. ISBN
978-0-465-06710-7.

Chris Parnin and Spencer Rugaber. 2012. Programmer Information Needs After
Memory Failure. In 2012 20th IEEE International Conference on Program Compre-
hension (ICPC) (Passau, Germany). IEEE, 123-132. https://doi.org/10.1109/ICPC.
2012.6240479

Richard Pawson and Robert Matthews. 2002. Naked Objects. John Wiley & Sons,
Ltd. ISBN 978-0-470-84420-5.

Jef Raskin. 2000. The Humane Interface: New Directions for Designing Interactive
Systems. Addison-Wesley. ISBN 978-0-201-37937-2.

David Réthlisberger, Oscar Nierstrasz, and Stéphane Ducasse. 2009. Autumn
Leaves: Curing the Window Plague in IDEs. In 2009 16th Working Conference
on Reverse Engineering (Lille, France). IEEE, 237-246. https://doi.org/10.1109/
WCRE.2009.18

David C. Smith, Charles Irby, Ralph Kimball, Bill Verplank, and Erik Harslem.
1982. Designing the Star User Interface. BYTE - The Small Systems Journal (ISSN
0360-5280) 7, 4 (4 1982), 242-282.

Bastian Steinert, Damien Cassou, and Robert Hirschfeld. 2012. CoExist: Over-
coming Aversion to Change. In Proceedings of the 8th Symposium on Dynamic
Languages (Tuscon, AZ, USA). ACM, 107-118. https://doi.org/10.1145/2480360.
2384591

Marcel Taeumel. 2020. Data-driven Tool Construction in Exploratory Programming
Environments. Ph.D. Dissertation. University of Potsdam, Digital Engineering

20

[31

[32

<Programming>"21 Companion, March 22-26, 2021, Virtual, UK

Faculty, Hasso Plattner Institute. https://doi.org/10.25932/publishup-44428
Marcel Taeumel and Robert Hirschfeld. 2016. Evolving User Interfaces From
Within Self-supporting Programming Environments: Exploring the Project
Concept of Squeak/Smalltalk to Bootstrap Uls. In Proceedings of the Program-
ming Experience 2016 (PX/16) Workshop (Rome, Italy). ACM, 43-59. https:
//doi.org/10.1145/2984380.2984386

Marcel Taeumel, Michael Perscheid, Bastian Steinert, Jens Lincke, and Robert
Hirschfeld. 2014. Interleaving of Modification and Use in Data-driven Tool
Development. In Proceedings of the 2014 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software (Portland,
Oregon, USA) (Onward! 2014). ACM, New York, NY, USA, 185-200. https://doi.
org/10.1145/2661136.2661150 ISBN 978-1-4503-3210-1.

Larry Tesler. 1983. Object-oriented User Interfaces and Object-oriented Lan-
guages (Keynote Address). In Proceedings of the 1983 ACM SIGSMALL Sym-
posium on Personal and Small Computers (San Diego, CA, USA). ACM, 3-5.
https://doi.org/10.1145/800219.806644

https://doi.org/10.1145/2556288.2557073
https://doi.org/10.1145/2556288.2557073
https://doi.org/10.1207/s15327051hci0104_2
https://doi.org/10.5555/3158161.3158175
https://doi.org/10.1145/3386335
https://doi.org/10.1145/263700.263754
https://doi.org/10.1109/2.35211
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/215585.215636
https://doi.org/10.22152/programming-journal.org/2017/1/13
https://doi.org/10.1109/VLHCC.2016.7739675
https://doi.org/10.1109/ICPC.2012.6240479
https://doi.org/10.1109/ICPC.2012.6240479
https://doi.org/10.1109/WCRE.2009.18
https://doi.org/10.1109/WCRE.2009.18
https://doi.org/10.1145/2480360.2384591
https://doi.org/10.1145/2480360.2384591
https://doi.org/10.25932/publishup-44428
https://doi.org/10.1145/2984380.2984386
https://doi.org/10.1145/2984380.2984386
https://doi.org/10.1145/2661136.2661150
https://doi.org/10.1145/2661136.2661150
https://doi.org/10.1145/800219.806644

	Abstract
	1 Introduction
	2 Stateful Models in Tools
	2.1 ``Modeless'' Domain Models
	2.2 Modal Application Models

	3 Direct Window Manipulation
	3.1 The New Verbs
	3.2 Known Uses

	4 Discussion
	4.1 Anti-patterns and Workarounds
	4.2 Naming the Verbs
	4.3 Consequences

	5 Conclusions
	Acknowledgments
	References

