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Abstract. Patient monitors at intensive care units produce too many
alarms – most of them being unnecessary. Medical staff becomes desensi-
tised and ignores alarms. This phenomenon is called alarm fatigue and it
negatively influences for both patients and staff. Some alarms are due to
an acute and unforeseeable events but others are the result of a continued
trend and hence foreseeable. We present a system that forecasts alarms
– at least the foreseeable share – and transforms them into scheduled
tasks. To achieve this, we use time-series models to forecast the patient’s
vital parameters and check whether the forecast violates the correspond-
ing alarm threshold. The vital parameter measurements and alarm data
stem from MIMIC-III but go through extensive preprocessing before the
actual forecasting can take place. The result is a proof of concept but
unfit for productive use. Lack of alarm data and low sampling frequencies
for vital parameters impair alarm forecasting. Our work shows that gated
recurrent unit models generally perform best for this task. A next step
towards productive use is evaluating the approach on vital parameter
data with higher time-resolution.
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1 Introduction

Too many alarms from various devices make the intensive care unit a noisy and
stressful place for both patients and medical staff. Different studies and reviews
report numbers as high as 700 alarms per day [6] or 187 alarms per bed per day –
only counting audible alarms [8]. Most of the alarms are either technically false,
clinically irrelevant, or otherwise unnecessary [24,27]. This causes alarm fatigue:
a desensitisation of clinicians by numerous alarms, many of which are either
false or otherwise irrelevant [24,8]. Alarm fatigue negatively influences both for
patients and medical staff [6].

The effects on medical staff are not extensively studied yet [23]. But stud-
ies indicate impaired mental efficiency and short-term memory [17] as well as
stress [16] and stress-induced ailments such as burn-out [26]. A very recent study
showed that false alarms are the medical staff’s main concern and almost all
members of the intensive care unit’s staff requested a reduction in false alarms
[22].

In patients, too many alarms and too much noise cause sleep deprivation
[20], cardiovascular abnormalities [1,11], longer hospital stays [9], increased re-
hospitalisation rates [11], increased need for analgesic medication [15], delayed
wound healing [28], intensive care unit syndrome (a cluster of psychological and
cognitive impairments) [2], and feelings of vulnerability and fear [10].

We still do not know how to effectively reduce the alarm burden on intensive
care units and no single existing solution seems to be sufficient. In this work,
we address threshold alarms – the most frequent type of alarms [8]. Threshold
alarms on patient monitors inform the medical staff that a vital parameter – such
as heart rate or blood pressure – is either too low or too high. If we could forecast
these alarms, we could spot critical conditions early – even before they pose a
danger to the patient. And we could convert acute, urgent, and disruptive alarms
into scheduled tasks that the medical staff can handle at their own discretion –
flexibly and over an extended period of time.

To forecast threshold alarms, we try to forecast the associated vital parame-
ter. This is a regression task that we can solve with statistical or machine learning
models for time-series. We try to find in the vital parameter measurements that
will result in the vital parameter crossing one of the respective alarm thresh-
olds. We are certain that we can not forecast all alarms since some alarms are
actually the result of an acute event rather than a continued trend. But some
alarms are foreseeable by inspecting the vital parameter measurements – these
are the alarms we try to forecast and convert into scheduled tasks. We aim for
few false positives to avoid increasing the staff’s workload any further. But we
are willing to accept many false negatives since not every alarm is foreseeable
from the vital parameter trend.

This is an extended version of a conference paper [4]. We include content that
we could not report in the conference paper due to page limitations, especially
regarding data set preparation. The rest of this work is structured as follows: In
section 2 we describe the data we use, why we chose this data set, and how we
have to prepare it before usage. In section 3 we describe the methods we use for
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alarm forecasting. In section 4 we show results on how well alarm forecasting
works and which methods appear to be the most promising. Finally, in section 5
we discuss our results including limitations and directions for future work.

2 Data Preparation

We surveyed the variety of medical data sets and found several large intensive
care unit data sets. We assessed the 3rd version of the Medical Information Mart
for Intensive Care (MIMIC-III) [14], the eICU Collaborative Research Database
(eICU CRD) [21], the High Time Resolution ICU Data Set (HiRID) [13], and the
Amsterdam University Medical Centers Database (AmsterdamUMCdb) [25] and
found that none of these data sets records patient monitor alarms. In fact, eICU
CRD, HiRID, and AmsterdamUMCdb contain no alarm system information at
all. MIMIC-III does not record alarm events but at least alarm thresholds and
changes to these thresholds. Using thresholds and vital parameter measurements,
we can reconstruct when alarms went off although the data set does not explicitly
record these alarm events.

Other data sets record vital parameters with a higher temporal resolution
(for example up to fs = 5min−1 for eICU CRD) and might allow for better
results in the regression task described in section 3. But we definitively need the
alarm threshold information – which are unique to MIMIC-III – to determine
when an alarm goes off.

In the remainder of this section we describe how we reconstructed alarm
events from the data provided in MIMIC-III. We used the methods described in
[3] and we reproduce parts of these methods here.

2.1 Data Slicing

Data set preparation starts with reducing the data set to a subset of relevant
information. MIMIC-III contains many table with various information such as di-
agnoses, lab values, and medications. But we are only interested in a single table:
The CHARTEVENTS table records so called ”charted events” – among them vi-
tal parameter measurements and alarm threshold updates. In CHARTEVENTS,
all charted events are coded as data items with a unique ITEMID that identi-
fied the type of event, measurement, or value. The D ITEMS table resolves the
different ITEMIDs. We are only interested in the data items representing mea-
surements for heart rate (HR), non-invasively measured systolic blood pressure
(NBPs), and peripheral blood oxygen saturation (SpO2) – and their respective
alarm thresholds. We selected these three vital parameters because they have
the highest temporal resolution within MIMIC-III. Table 1 shows a complete list
of used data items.

2.2 Data Cleaning

Vital parameters cannot assume arbitrary values but are limited to certain phys-
iologically possible ranges. For example, SpO2 can not exceed 100% and HRs
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Table 1: Adapted from [3]: ITEMIDs retained while filtering CHARTEVENTS

ITEMID Label

220045 HR
220046 HR Alarm - High
220047 HR Alarm - Low
220179 NBPs

223751 NBPs Alarm - High
223752 NBPs Alarm - Low
220277 SpO2

223769 SpO2 Alarm - High
223770 SpO2 Alarm - Low

above 350 bpm are rare and unsustainable. MIMIC-III contains some instances
of unrealistically high or low values for the vital parameter measurements or the
alarm thresholds. We consider these extreme values to be erroneous or to have
a special but undocumented meaning. Either way, we can not interpret these
values. From a contextual inquiry at an intensive care unit we learned that key-
boards at the intensive care unit might have a rubber cover to stop germs from
accumulating in and on the keyboard. But this causes the keyboard’s keys to be
sticky which impairs data entry and causes documentation errors. To deal with
unrealistically high or low values, we remove all vital parameter measurements
and alarm thresholds that we consider to be invalid from the data set. Table 2
lists lower and upper limits for each parameter type. We retain values within this
range and discard values beyond this range. Figure 1 shows the distribution of
measurements and thresholds before cleaning as boxplots. Many extreme outlier
force the interquartile range to be a single line at the leftmost corner of the plot.
A histogram would be completely unintelligible. Figure 2 shows the distributions
of measurements and thresholds after cleaning as boxplots and histograms. This
distribution is much more reasonable. The measurement histogram exhibits a
bell-shaped distribution that is only slightly positively skewed.

Table 2: Adapted from [12]: Physiologically possible ranges for the vital param-
eters considered in this work.

Parameter Lower Limit Upper Limit

HR 0 bpm 350 bpm
NBPs 0 mmHg 375 mmHg
SpO2 0% 100%

For thresholds one condition must always hold true: The low threshold must
always be lower than the high threshold. This is an invariant for all vital pa-
rameters. If this condition is not met, every measurement of the vital parameter
– regardless of its value – will trigger an alarm event; which defies the purpose
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Fig. 1: Adapted from [3]: Boxplots showing the distribution of NBPs high alarm
thresholds, low alarm thresholds, and measurements before cleaning. The distri-
bution is vastly skewed with the valid range barely visible at the far left corner
and a wide range of outliers.
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Fig. 2: Adapted from [3]: Boxplots and histograms showing the distribution of
NBPs high alarm thresholds, low alarm thresholds, and measurements after
cleaning. With outliers removed, the distribution looks much more reasonable
and especially the measurement values are almost normally distributed with only
a slight positive skew.
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of alarms altogether. MIMIC-III violates this invariant occasionally: Although
high and low thresholds are always recorded simultaneously, the high threshold
is sometimes lower than the low threshold. We address this problem in two ways:

Exact threshold swaps When thresholds are exactly swapped, the low thresh-
old takes the value of the high threshold and vice versa. We correct this by
swapping the set of thresholds back to normal (Figure 3).

Threshold overlaps When thresholds overlap but we cannot identify an ex-
act swap, we just remove the erroneous threshold value and carry over the
previously active threshold (Figure 4).

2.3 Extracting Alarm Events

Now that we addressed all data quality issues, we can extract alarm events. We
do this by using algorithm 1 on MIMIC-III’s CHARTEVENTS table. First, we
split the CHARTEVENTS table by ICUSTAY – a patient’s single stay at the
intensive care unit (one patient might be at the same intensive care unit multiple
times throughout his or her life). Then, we compare each of the patient’s vital
parameter measurements to the high and low thresholds active at the time of
measurement. If the measurement exceeds the high threshold or is below the
low thresholds, the algorithm yields and alarm event. A major drawback of
this methods is that the sampling frequency of the measurements influences the
number of alarms: HR and SpO2 are measured and recorded more often than
NBPs, hence more alarms are extracted by the algorithm. But this does not show
that the patient actually spend more time with unhealthy NBPs as compared
to unhealthy HR or SpO2.

2.4 Resampling Vital Parameters

By extracting the alarm events, we created the labels for our forecasting system.
Now we still have to prepare the vital parameter time series to be used as input
for the statistical and machine learning models described in section 3. The input
data preparation involves two steps: resampling and chunking. Our approach is
that we want to use time-series models to forecast on the patient’s vital param-
eter measurements – as a regression task. Time-series models rely on constant
sampling frequencies in the time series. But unlike eICU CRD with its vitalPeri-
odic table, MIMIC-III’s CHARTEVENTS table does not record measurements
with a constant sampling frequency but reports all charted events and data (incl.
measurements) only sporadically. We first have to establish constant sampling
frequencies for all vital parameter measurements so that time-series models can
work with them. Whenever possible, we resample to fs = 1h−1 since this is
approximately equal to the median sampling frequency of the measurements. To
do this, we employ three different resampling methods: minimum, maximum,
and median resampling. Later-on, we will compare how the different resampling
methods influence the forecasting performance.
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(a) Exactly swapped low and high thresholds before correction. Every mea-
surement in the time period where the thresholds are swapped will produce
an alarm.
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(b) A data cleaning step removes the exact threshold swap thus rectifying the
alarm thresholds. Now we will not recognise any alarm events in the respective
time period.

Fig. 3: Adapted from [3]: Example for an exact threshold swap correction.
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(a) In this case, the thresholds overlap without being exactly swapped. Here,
the unreasonable low value for the high threshold would result in all measure-
ments in the respective period of time triggering a high threshold alarm.
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(b) Threshold overlap was corrected by removing the responsible alarm thresh-
old settings. After correction, the measurements do not trigger any high alarms
in the respective period of time.

Fig. 4: Adapted from [3]: Example for threshold overlap correction.
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Data: MIMIC-III CHARTEVENTS
Result: List of Alarm Events
foreach ICUSTAY do

foreach Parameter do
msmts := measurements for Parameter and ICUSTAY;
highs := high threshold settings for Parameter and ICUSTAY;
lows := low threshold settings for Parameter and ICUSTAY;
foreach high in highs do

foreach msmt in msmts do
if time(high) <= time(msmt) < time(high+1) then

if value(msmt) > value(high) then
Return a high alarm event at msmt;

end

end

end

end
foreach low in lows do

foreach msmt in msmts do
if time(low) <= time(msmt) < time(low+1 then

if value(msmt) < value(low) then
Return a low alarm event at msmt;

end

end

end

end

end

end

Algorithm 1: Taken from [3]: Algorithm for extracting alarm events from
measurements and thresholds.
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2.5 Chunking to Avoid Data Gaps

Occasionally, there are larger gaps in the vital parameter measurements. We
assume that this is because the patient is not at the intensive care unit but in
the operation theatre or some other ward. In these cases we do not attempt
resampling but revert to chunking: We subdivide the patient’s time-series data
along the data gaps and treat these gaps separately as if they would belong
to different ICUSTAYs for the same patient. This chunking procedure has the
disadvantage that the model has to re-learn every time a data gap occurs and
cannot provide alarm forecasts for some hours. We argue that our chunking
methods makes sense anyway since the patient might be in a completely different
state after surgery then before.

3 Alarm Forecasting

We want to forecast threshold alarms. To do this, we use time-series models
to forecast the vital parameters measurements as a regression task. Then we
use the forecast vital parameters to check whether they will be above the high
threshold or below the low threshold in the near future. For the time-series
models we compare two different model paradigms: Statistical models that do
not need a separate set of training data and machine learning models that we
first train on a dedicated training data set (a part of the original data set).
We frame the problem as a regression task to ensure comparability between the
model paradigms since the statistical models cannot perform classification right
away. Also, all models are provided with the same set of features: Although we
could improve machine learning models by adding more features we refrained
from doing so. With all the data set issues listed in section 2, superb model
performance is not the goal of this work. We rather want to provide a proof of
concept and compare different model paradigms using the same data.

Experiment Setup The basic setup is the same for both model paradigms: We
provide the model with either 12 or 30 timesteps (lags) of vital parameter. This
is equivalent to 12 hours or 30 hours of intensive care unit stay data as input. We
expect a vital parameter forecast for the 13th or 31st lag. If the vital parameter
forecast is above the high threshold, a high alarm is forecast. If the vital pa-
rameter forecast is below the low threshold, a low alarm is forecast. Otherwise,
no alarm is forecast. Finally, we compare the forecast with the actual alarm
situation as established in subsection 2.3.

Evaluation For evaluation, we face a similar problem as Clifford et al. when
they posed the 2015 PhysioNet/Computing in Cardiology Challenge which aims
at reducing false arrhythmia alarms in the intensive care unit [5]. For Clifford
et al., false negatives were much worse than false positives since no arrhythmia
should pass unnoticed. They developed a metric that accounts for this imbalance
and penalised false negatives five times more heavily than false positives (Equa-
tion 1). For us the situation is vice versa: We already noticed in section 1 that
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some alarms cannot be forecast because they are the result of an acute event and
not a continued trend – false negatives are to be expected. But we absolutely
want to avoid increasing the workload for medical staff, hence we want to avoid
false positives. We adapted the evaluation score from Clifford et al. to fit our
problem (Equation 2). We also removed the true negatives from the equation
since we are not interested in no-alarm situations where there is neither an alarm
not a forecast for an alarm.

Clifford’s evaluation score =
TP + TN

TP + TN + FP + 5 · FN
(1)

our evaluation score =
TP

TP + 5 · FP + FN
(2)

Statistical Models Statistical time-series models forecast without training on
other time-series in advance and thus without prior knowledge through similar-
time series. We use the autoregressive integrated moving average (ARIMA)
model and the autoregressive integrated moving average with exogenous vari-
ables (ARIMAX) model. ARIMA uses only one time-series as input: the endoge-
nous series. For ARIMA, we compare median resampling with either minimum
resampling for low alarms or maximum resampling for high alarms. ARIMAX
has another time-series – the exogenous series – in addition to the endogenous
series. For ARIMAX, we use minimum resampling for low alarms and maximum
resampling for high alarms as endogenous series. As exogenous series, we use the
median-resampled vital parameter series for both high and low alarms. Addition-
ally, we modulate the input size resulting in six different model configurations
(Table 3).

Table 3: Adapted from [4]: ARIMA and ARIMAX models.

Model ID Input Size Model Type Endog.

A 01 12 12 ARIMA Median
A 02 12 12 ARIMA Min/Max
A 03 12 12 ARIMAX Min/Max
A 01 30 30 ARIMA Median
A 02 30 30 ARIMA Min/Max
A 03 30 30 ARIMAX Min/Max

Machine Learning Models Unlike statistical model, machine learning models un-
dergo a separate training phase before they can make predictions. We use the
class of recurrent neural networks (RNNs), since these are usually used on time-
series [18,19,7]. Specifically, we compare vanilla RNNs, gated recurrent units
(GRUs), and long short-term memory neural networks (LSTMs). With all model
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types, we use 80% of each chunk as training data and 20% as test data for assess-
ing model performance. Otherwise, we use the same setup as for the statistical
models: 12 or 30 lags as input and the 13th or 31st lag to be forecast and then
checked against the alarm threshold. We then repeat this to cover the whole
chunk. Additionally, we also want to test if and how scaling the input data
influences the model’s performance. We compare:

1. no scaling (suffix n)
2. standard scaling: xscaled = x−µ

σ (suffix s1)

3. min-max scaling: xscaled = x−min
max−min (suffix s2)

Table 4 lists a machine learning model configurations.

Table 4: Adapted from [4]: Machine learning (ML) models. Standard scaling is
indicated by the suffix ”s1”. Min-max scaling by the suffix ”s2”. If no scaling is
performed, the suffix is ”n” for ”non-scaled”.

Model ID Scaling Model Type Endog.

LS 01 s1 Standard LSTM Median
LS 02 s1 Standard LSTM Min/Max
GR 01 s1 Standard GRU Median
GR 02 s1 Standard GRU Min/Max
RN 01 s1 Standard RNN Median
RN 02 s1 Standard RNN Min/Max
LS 01 s2 Min-Max LSTM Median
LS 02 s2 Min-Max LSTM Min/Max
GR 01 s2 Min-Max GRU Median
GR 02 s2 Min-Max GRU Min/Max
RN 01 s2 Min-Max RNN Median
RN 02 s2 Min-Max RNN Min/Max
LS 01 n None LSTM Median
LS 02 n None LSTM Min/Max
GR 01 n None GRU Median
GR 02 n None GRU Min/Max
RN 01 n None RNN Median
RN 02 n None RNN Min/Max

4 Results

In this section, we present the individual model performances. We first compare
the statistical models among each other. Then, we compare the ML models
among each other. Finally, we compare both model paradigms to each other.

Figure 5 compares how the input size influences the models performance
across statistical models. As expected, longer input sequences usually yield better
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model performance. This suggests that predictions will improve the longer the
patient stays at the intensive care unit. To get better predictions earlier, we
need to increase the sampling frequency. This is not possible with MIMIC-III
but eICU CRD might be promising as long as we find a way to add alarm data.

Figure 6 compares the best statistical models among each other, contrasting
high and low alarms for different vital parameters separately. We highlighted
the best performing model for each alarm type in a more saturated colour. The
performance varies greatly with alarm type. High alarms are generally more
foreseeable, at least for HR and NBPs. Peak performance for high and low alarms
is not necessarily achieved with the same model, for example in HR and SpO2.
For future work it might be best to consider high and low alarms as completely
different endpoints and not trying to build one model for multiple alarm types.

Figure 7 compares all machine learning models among each other, contrasting
model type. No single model type stands out as alarm type, vital parameter,
and scaling obviously influence the performance of all models. But it seems that
scaling has a clearly negative effect on the models’ performance. This calls for
further investigation in the next figures.

Figure 8 compares the effect of different scaling methods on machine learn-
ing models. The figure confirms that scaling negatively influences the models’
performance. The negative influence is most obvious in SpO2 models. As with
statistical models (Figure 6), alarm type influences the performance, but differ-
ently. For HR, low alarms are more foreseeable. For NBPs, high alarms are more
foreseeable. For SpO2, the influence of scaling is serve and obscures differences
between high and low alarms. But looking at SpO2 models with no scaling, high
alarms are more foreseeable as per this model.

Figure 9 compares all machine learning models and contrasts performances
for high and low alarms. Again, we highlighted the best performing models for
each alarm type in a more saturated colour. Multiple models exhibit the same
peak performance for SpO2 high alarms. Otherwise, this figure clearly shows that
GRU models with median resampling show an overall superior performance. This
is an important direction for future research.

Finally, Figure 10 compares the best performing statistical models with the
best performing machine learning models. Mostly, machine learning models out-
perform statistical models, especially in the SpO2 use case. Figure 11 shows
why this is the case: The confusion matrix reveals that machine learning models
are much better at avoiding false positives. Since false positives are penalised
five times more heavily as per our evaluation metrics, this is a major advantage
for the model in this specific scenario. Machine learning models – with their
prior knowledge through training – do not tend to forecast extreme values as
much as statistical model that do not have prior knowledge on the domain. As
extreme vital parameter forecasts cause alarms forecasts, this prior knowledge
helps avoiding false positive alarms and improves evaluation scores.
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Fig. 5: Comparison of train sizes for statistical models (ARIMA and ARIMAX).
For all parameters and model we compare a train size of 12 lags with a train
size of 30 lags both for high alarms (suffix H) and low alarms (suffix L).



16 J. Chromik et al.

H
R

_A
_0

1_
12

_d

H
R

_A
_0

2_
12

_d

H
R

_A
_0

3_
12

_d

ID

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ev
al

ua
tio

n 
Sc

or
e

HR
Low
High

BP
_A

_0
1_

12
_d

BP
_A

_0
2_

12
_d

BP
_A

_0
3_

12
_d

ID

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ev
al

ua
tio

n 
Sc

or
e

NBPs
Low
High

O
2_

A_
01

_1
2_

d

O
2_

A_
02

_1
2_

d

O
2_

A_
03

_1
2_

d

ID

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ev
al

ua
tio

n 
Sc

or
e

SpO2
Low
High

Fig. 6: Comparison of alarm types (high alarm and low alarm) for statistical
models across all vital parameters.



Predictive Alarm Prevention 17

H
R

_0
1_

n_
L

H
R

_0
1_

n_
H

H
R

_0
1_

s1
_L

H
R

_0
1_

s1
_H

H
R

_0
1_

s2
_L

H
R

_0
1_

s2
_H

H
R

_0
2_

n_
L

H
R

_0
2_

n_
H

H
R

_0
2_

s1
_L

H
R

_0
2_

s1
_H

H
R

_0
2_

s2
_L

H
R

_0
2_

s2
_H

ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ev
al

ua
tio

n 
Sc

or
e

HR
Model Type: 

RNN
LSTM
GRU

BP
_0

1_
n_

L

BP
_0

1_
n_

H

BP
_0

1_
s1

_L

BP
_0

1_
s1

_H

BP
_0

1_
s2

_L

BP
_0

1_
s2

_H

BP
_0

2_
n_

L

BP
_0

2_
n_

H

BP
_0

2_
s1

_L

BP
_0

2_
s1

_H

BP
_0

2_
s2

_L

BP
_0

2_
s2

_H

ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ev
al

ua
tio

n 
Sc

or
e

NBPs
Model Type: 

RNN
LSTM
GRU

O
2_

01
_n

_L

O
2_

01
_n

_H

O
2_

01
_s

1_
L

O
2_

01
_s

1_
H

O
2_

01
_s

2_
L

O
2_

01
_s

2_
H

O
2_

02
_n

_L

O
2_

02
_n

_H

O
2_

02
_s

1_
L

O
2_

02
_s

1_
H

O
2_

02
_s

2_
L

O
2_

02
_s

2_
H

ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ev
al

ua
tio

n 
Sc

or
e

SpO2
Model Type: 

RNN
LSTM
GRU

Fig. 7: Comparison of ML model types vanilla RNN, LSTM and GRU with dif-
ferent configurations across vital parameters and alarm types (suffix H for high
alarms and suffix L for low alarms).
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Fig. 8: Comparison of ML models executed with different scaling methods applied
(Standard, Min-Max) or without scaling (None) across vital parameters and
alarm types (suffix H for high alarms and suffix L for low alarms).
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Fig. 9: Selection of best ML models. Models with model type GRU and median
resampled chunks as endogenous input variable always perform best (except for
high alarm forecasting of SpO2).
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Fig. 10: Comparison of best performing statistical models to best performing ML
models.
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Fig. 11: Comparison of confusion matrix values (false positives, false negatives,
and true positives; not showing true negatives) of best performing statistical
models to best performing ML models.
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5 Discussion

We have shown a method to forecast threshold alarms. This, however, is limited
to the share of alarms that can be forecast because of a continued trend. Acute
events – for example sudden onset of cardiac arrhythmia – cannot be foreseen
by our method. With our method, we can transform a share of the alarms into
scheduled tasks. Thus removing the urgency from the situation and reducing
the alarm load. Also, forecasting alarms buys staff more time to treat critical
conditions which also benefits patients. This way, patients can get treatment
even before their conditions becomes overly critical.

Alarm fatigue is a well-known problem in medicine with many detrimental
effects on patients and staff. From existing research on alarm fatigue, it is per-
fectly clear that we must reduce the number of alarms. But we do not know yet
how we can reduce the number of alarms without risking to overlook a critical
condition and sacrificing patient safety. Paine et al. systematically reviewed ex-
isting literature on alarm fatigue and compiled a list of alternative approach to
reduce the alarm load: Widening alarm thresholds and introducing alarm delays
can reduce the total number of alarms but might have adverse safety outcomes.
Using disposable electrocardiographic lead wires and changing electrodes daily
will reduce measurement errors and reduce technically false alarms without en-
dangering patients but increases staff workload and monitoring costs. Finally,
for some interventions the safety outcomes are yet unclear, for example chang-
ing alarm sounds and presentation, personal alarming through pagers or mobile
phones, and focusing monitoring on high-risk patients while relaxing monitoring
on low-risk patients. Our forecasting approach does not endanger patients, pro-
duces no additional cost, and – by emphasising low false positive rates – does
not increase staff workload.

The method we proposed in this work is only a proof of concept. We showed
that the approach works in principle and we found important indications for
future work. The methods, however, is not yet ready for productive use. The
most striking limitation is a data set issue. As we already mentioned in sec-
tion 2, MIMIC-III is the only clinical data set that contains alarm data. But its
low temporal resolution regarding vital parameter measurements vastly limits
MIMIC-III’s usability. With unsteady sampling frequencies of fs ≈ 1h−1, fore-
casting is difficult and limited. Other clinical data sets feature higher and steady
sampling frequencies – for example eICU CRD with steady fs ≈ 12h−1 – but
lack alarm data altogether. For this work, we chose MIMIC-III and tried to cope
with the low temporal resolution. To circumvent the low sampling frequency
issue, future work can focus on vital parameter forecasting using eICU CRD,
omitting the actual alarm event forecasting or using simulated alarm thresholds.
Another approach for future work could be framing the problem as a classifica-
tion task rather than a regression task. Through this work, we already know that
machine learning models outperform statistical models. A possible next step can
be to remove the indirection of forecasting the vital parameter measurement and
forecast the alarm right away.
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Reducing the number of false alarms at the intensive care unit and coun-
teracting alarm fatigue is very much necessary according to domain experts.
The models we proposed are far from providing perfect alarm forecasts. This is
mostly due to the data set issues described above. But there is huge potential
for this approach to alleviate alarm fatigue in the future with better data sets
featuring high temporal vital parameter resolution and precise alarm data.

Acronyms

AmsterdamUMCdb Amsterdam University Medical Centers Database
ARIMA autoregressive integrated moving average
ARIMAX autoregressive integrated moving average with exogenous variables
eICU CRD eICU Collaborative Research Database
GRU gated recurrent unit
HiRID High Time Resolution ICU Data Set
HR heart rate
LSTM long short-term memory neural network
MIMIC-III 3rd version of the Medical Information Mart for Intensive Care
ML machine learning
NBPs non-invasively measured systolic blood pressure
RNN recurrent neural network
SpO2 peripheral blood oxygen saturation
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