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Abstract: Observational studies are an important tool for determining whether the findings from con-
trolled experiments can be transferred into scenarios that are closer to subjects’ real-life circumstances.
A rigorous approach to observational studies involves collecting data from different sensors to compre-
hensively capture the situation of the subject. However, this leads to technical difficulties especially if the
sensors are from different manufacturers, as multiple data collection tools have to run simultaneously.
We present SensorHub, a system that can collect data from various wearable devices from different
manufacturers, such as inertial measurement units, portable electrocardiographs, portable electroen-
cephalographs, portable photoplethysmographs, and sensors for electrodermal activity. Additionally,
our tool offers the possibility to include ecological momentary assessments (EMAs) in studies. Hence,
SensorHub enables multimodal sensor data collection under real-world conditions and allows direct
user feedback to be collected through questionnaires, enabling studies at home. In a first study with
11 participants, we successfully used SensorHub to record multiple signals with different devices and
collected additional information with the help of EMAs. In addition, we evaluated SensorHub’s technical
capabilities in several trials with up to 21 participants recording simultaneously using multiple sensors
with sampling frequencies as high as 1000 Hz. We could show that although there is a theoretical
limitation to the transmissible data rate, in practice this limitation is not an issue and data loss is rare. We
conclude that with modern communication protocols and with the increasingly powerful smartphones
and wearables, a system like our SensorHub establishes an interoperability framework to adequately
combine consumer-grade sensing hardware which enables observational studies in real life.

Keywords: multimodal sensing; home-based studies; activity recognition; sensor systems; ecological
momentary assessment; digital health

1. Introduction

Clinical research is and remains one of the most important components for improving
the general healthcare system. The two major components are controlled experiments and
observational studies [1]. Controlled experiments aim at controlling all relevant variables
and modulating only one variable at a time. This is usually achieved by a sanitized labora-
tory environment that creates a situation that is far from the subjects’ real-life conditions.
Observational studies on the other hand try to observe people without removing possible
influencing factors. Hence, observational studies are more prone to confounding factors
but nevertheless important in order to, firstly, discover research questions and hypotheses
that can then be studied rigorously through controlled experiments (as is the case with
grounded theory research [2]), and secondly, to validate that findings from controlled
experiments are applicable in real-world scenarios.

Due to advancements in wearable sensor technology, noninvasive studies can now also be
carried out outside a laboratory hence enabling observational studies “in the wild”. However,
collecting data from multiple devices from different manufacturers poses technical difficulties.
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Therefore, many studies are limited to unimodal data collection using only one type of device
from one manufacturer for reasons of user convenience or of technical feasibility. This vastly
limits the possibilities of sensor-based observational studies and hence this issue needs to be
addressed. We present our system, called SensorHub, which enables multimodal sensing in
real-life scenarios without overbearing the user with technical difficulties.

Motivation and Problem Statement

Controlled experiments are an invaluable tool for determining the precise effect of
a well-defined intervention under controlled conditions. However, they also suffer from
shortcomings such as the high cost for the researchers, high effort for the subjects, non-
natural setups which can influence the results, and vulnerability to external circumstances
(e.g., outbreak of a pandemic). Therefore, controlled experiments need to be supplemented
by observational studies in a setting that is closer to the real-life conditions of the subject.
These studies, ideally, take place at home or in an environment that is familiar to the subject.

A major advantage of conducting studies in a non-laboratory setting is that non-laboratory
studies lead to more realistic results because the subject does not feel observed. The effect that
people behave differently when they are taking part in a study or being observed is known
as the Hawthorne effect and was first described in the 1950s [3]. By now, the existence of the
Hawthorne effect could be validated by a randomized, controlled trial [4]. The Hawthorne effect
refers to subjects changing their behavior due to their awareness of being observed. This is an
issue in experiments carried out in a laboratory setting since the laboratory does not resemble the
subjects’ normal environment and hence the subjects behave differently, even without noticing
this change in behaviors themselves. To alleviate or nullify this change in behavior, researchers
have to create experiment setups where the subjects are not or only marginally aware that they
are observed. This can be the case with home-based studies where the subjects are observed in
their normal day-to-day environment. These home-based studies are enabled by SensorHub.

Through the development of the latest wearables, it is possible to record vital parameters
and movement data simultaneously. This poses a chance for advancements in various fields
of research, for example, human activity recognition (HAR). Common parameters that can
be reliably measured today with portable sensors are e.g., heart rate variability (HRV), blood
pressure (BP), body temperature, or skin conductivity (SC). But also continuous measurements
such as the recording of an electrocardiogram (ECG) or electroencephalography (EEG) are
now possible.

Nevertheless, there are use cases that require multiple sensor modalities or sensor
locations, for example, when one wants to study the relationship between location, stress,
and eating behavior. Here, not only the location and movement of the subject are necessary,
but also vital parameters, such as skin conductance. Therefore, usually multiple sensor
devices from different manufacturers are needed. This creates a further obstacle, as different
device manufacturers work with different applications to evaluate their signals. This in turn
leads to an almost insurmountable effort for both the subject and the researcher. Sometimes
it is not possible to get the raw data of the sensors but one directly receives pre-processed
signals. However, if it is possible to preserve the original data, it is often not possible to
compare them with those of other manufacturers because there is no uniform format. This
challenge is visualized in Figure 1.

In addition to collecting sensor data for studies, it is important to be able to get point-
in-time feedback from the user. Ecological momentary assessments (EMAs) refer to the
repeated polling of certain conditions (behavior, feelings, experiences). The idea of EMAs
is to bring together the science and practice of clinical psychology by looking at behavior in
real-life situations [5]. Taking up the previously described example again, in which eating
behavior is to be examined, it is important not to rely solely on pure sensor data, but also to
consider other factors. For example, information about emotional states can be collected by
means of the questionnaires implemented in SensorHub and the possibility to send them
to the user at certain points in time. The final combination of objective measurements and
subjective feelings offers enormous potential for studies in everyday life.
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In this work, we aim at giving an answer to the research question of how multi-modal
and especially multi-sensor data recording can be performed while averting inconsistencies
between the sensor data (regarding data format and time offset) and avoiding the effort of
coordinating deviating recording procedures among different sensor devices. We also show
how we implemented EMAs and how it can collect additional important information.

Figure 1. When working with multiple devices, one has to deal with different apps that come with
specific manufactures. This often leads to the fact that data is already pre-processed or delivered in
different data formats.

2. Approach

To overcome the obstacles that come with using many different sensors in home-based
studies, we present our application called SensorHub. As the name suggests, our application
acts as a central component in the communication between several sensors and the subject’s
smartphone (cf. Figure 2). SensorHub offers connecting to different wearable devices over classic
Bluetooth or Bluetooth Low Energy (BLE) and aggregates the signals in a consistent data format.
The data from the sensors is sent to the smartphone in real-time, making it possible to receive
immediate feedback. Thus, errors, e.g., in transmission or processing, can be identified directly.

Figure 2. Visualization of our new approach when working with multiple wearables at the same
time. The different sensor data is streamed to our SensorHub application using classic Bluetooth or
Bluetooth Low Energy (BLE). The collected data can be manually pushed to the server for further
research and visualizations.
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2.1. High-Level Architecture

SensorHub consists of multiple components. It offers a frontend in form of an Android
application for the subject as well as a dashboard for the researcher. The latter is used to
create and manage studies for which sensor data should be collected. Through this dashboard,
the researcher can define sensors for a study. Consequently, a potential subject does not need
to initialize the sensors for a study, but simply uses the Android app. The defined sensors
are shown automatically and can be connected via Bluetooth with one click. By starting a
recording, the sensor data is streamed to the app. In the app, there is also the option to
provide a questionnaire or let the user record an audio file. Furthermore, uploading the
sensor and questionnaire data directly and continuously allows the researcher to monitor the
measurements at any time via the dashboard without any further effort from the subject. More
detailed descriptions are given in Sections 4.1 and 4.2, respectively.

2.2. Practical Relevance

Inertial measurement units (IMUs), especially accelerometers, seem to be the single most
relevant sensor in HAR [6]. However, multimodal sensor fusion, i.e., the use of multiple
different sensors such as barometric, thermometric, or even electrocardiographic sensors is also
a predominant theme, according to a survey [7]. Especially in energy-consuming activities, ECG
is of vital importance [8], which increases its relevance in sports science and medicine. This
is supported by another review that states that “Physical health sensors, including heart rate
(HR), oxygen saturation (SpO2), BP, ECG, blood glucose (BG), respiratory rate (RR), etc., are
sometimes used with motion sensors to detect the activities of subjects for rehabilitation purpose
or capturing their vital signals for health condition evaluation.” [9].

Furthermore, the introduction of an individually adaptable questionnaire supports
the practical relevance even more. Current research shows that smartphone-based EMA
is on the one hand a very active topic and on the other hand offers enormous potential to
combine objective measurements and subjective perceptions [10].

This strongly manifests a need for a medical-grade multi-modal sensor and question-
naire data collection tool, which is what we propose in this work.

3. Related Work

Multimodal sensing is a challenge in various areas of engineering and research. Hence,
there are already solutions in place that provide data collection from different sensors to
some extent. However, none of them offers the possibility to perform home-based studies
with such little effort on behalf of the subject. For home-based studies, the software system
serves as an interface between researcher and subject. The researcher defines what needs
to be recorded in terms of sensor selection and placement. The subject performs their
normal behaviors, for example at home, and data is collected automatically during this
time. Sensor type and placement cannot be accidentally changed by the subject. Data is
initially stored on the phone and later transferred to a backend server.

Existing solutions to multimodal sensing can coarsely be subdivided into two cate-
gories: Firstly, those that only record data from the internal sensors of the smartphone,
such as Phyphoxr (https://phyphox.org/ (accessed on 14 June 2021)) and Physics Toolbox
Sensor Suite (https://www.vieyrasoftware.net/ (accessed on 14 June 2021)). And secondly,
those that also collect data from external sensors, such as RADAR-base (https://radar-
base.org/ (accessed on 14 June 2021)), former Science Journal (https://support.google.
com/sciencejournal/answer/9715912 (accessed on 14 June 2021)), and Thryve (https:
//thryve.health/ (accessed on 14 June 2021)). In the following paragraphs, we briefly de-
scribe each of the aforementioned solutions and Table 1 provides a structured comparison.

The open-source smartphone app Phyphoxr has been created at the 2nd Institute
of Physics of the RWTH Aachen University in Germany. As the name suggests, the app
was developed for physics experiments [11]. Therefore, it focuses mainly on the sensors
integrated in smartphones. The possibility to integrate external sensors is currently limited
to BLE devices which expose common Generic Attribute Profile (GATT) characteristics. Of

https://phyphox.org/
https://www.vieyrasoftware.net/
https://radar-base.org/
https://radar-base.org/
https://support.google.com/sciencejournal/answer/9715912
https://support.google.com/sciencejournal/answer/9715912
https://thryve.health/
https://thryve.health/
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the 8 sensor types supported by SensorHub, only 2 use these characteristics, so Phyphox is
not a viable alternative. Thus, even though Phyphox provides a backend, it is not suitable
for home-based studies due to a lack of compatible external sensors.

Table 1. A structured comparison of related work with SensorHub shows the unique advantages of
SensorHub over alternative solutions. Cells with a ’?’ mark information that is not included in public
information about the respective system.

Open
Source

External
Sensors EMA

Home-
Based 1

Studies

Visuali-
Zations Backend 2

Phyphox GNU GPL no no no yes yes

Physics Toolbox
Suite Pro no no no no yes no

RADAR-base Apache-2.0 yes (5) 3 yes 4 no yes yes

Science Journal Apache-2.0 yes 5 no no yes yes 6

Thryve no yes yes ? ? ?

SensorHub MIT yes (8) 7 yes yes yes yes
1 Using the system for study execution is possible without frequent contact between researcher and subject. 2 Data
is stored not only on the phone but there is also a backend server able to handle large amounts of data and
store them securely. 3 Empatica E4, Pebble 2, Bittium Faros, Biovotion Everion, Fitbit Charge 2. 4 In form of an
additional application. 5 Can connect to Arduino and Vernier devices. 6 Via Google Account. 7 See paragraph
Consumer Hardware for Data Acquisition in Section 4.1.

Vieyra Software published in March 2017 their Physics Toolbox Suite Pro and their free
Physics Toolbox Sensor Suite for Android smartphones. It was developed as a tool for physics
experiments on mobile devices for secondary education, universities, and professional settings.
Similar to Phyphox, the integration with external sensors is not given in a relevant sense.
Furthermore, no backend is provided. Thus, the resulting data cannot be controlled by the
researcher during the collection of a home-based study. In contrast, SensorHub provides more
external sensors and the possibility to check the collected data while the study is running.

RADAR-base (Remote Assessment of Disease And Relapses) is an open-source platform
to collect data from wearable devices. According to their website “the main focus of RADAR-
base is a seamless integration of data streams from various wearables to collect sensor data
in real-time and store, manage and share the collected data with researchers for retrospective
analysis”. In addition to the smartphone sensors, five different wearables (Empatica E4, Pebble
2, Faros, Biovotion, Fitbit) can be integrated into the app. RADAR-base solves a similar
problem. It is primarily less user-friendly than SensorHub due to the lack of clear navigation.
Furthermore, while SensorHub has an explicit focus on device support, RADAR-base recently
even deprecated a device, indicating that this may no longer be a core feature of RADAR-
base. It is likely that using RADAR-base with the currently supported devices is still possible,
however, an alternative with focus on sensors will help those researchers who cannot use
RADAR-base for reasons of device support. RADAR-base additionally offers a so-called
questionnaire app. In contrast to RADAR-base, however, the approach of SensorHub is to have
all functions integrated in one app in order to keep the additional effort for the subject as low
as possible. Therefore, SensorHub offers both sensor data recording and questionnaires in one
app. Lastly, RADAR-base does not clearly indicate the state of each sensor, whereas SensorHub
provides a graph for each collected data type to ensure the sensors are working properly.

Google’s former Science Journal provided access to the phone’s internal sensors
through a user-friendly interface that is directed at students and teachers for use in a class-
room setting. Formerly, there was a collaboration with the Arduino Project but accessing
external sensors was not a goal of this project. The Science Journal was thus limited with
regards to the collection of health data, which SensorHub is specifically focused on.
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Thryve caught our attention through a literature search. Developed by mPioneers in
Germany in 2017, the application seems to be already established in a productive environment.
According to their website “Thryve enables health services to connect all their customers’
device data through one harmonized plug and play API”. With more than 320 wearables being
able to integrate, they cover a wide range of available devices. However, since the software
is not open-source, details remain hidden. It is not clear whether raw data is available and
customization also seems to involve costs. According to their website, Thryve also offers the
possibility to provide questionnaires. However, it is still not clear in which form this is possible
and to what extent they are adaptable. Furthermore, missing access to the source code poses
privacy concerns, since it cannot be certain what happens to the data. Thryve thus does not
have value for research into low-level health algorithms. As SensorHub exclusively includes
sensors with raw data access, it is much better suited to this use-case.

4. Implementation

Our ultimate objective is to perform home-based, observational studies. Therefore,
we have to collect multimodal data from various sensors attached to subjects in real-life
situations. To achieve this, we utilize various external sensors, smartphones, and a server
infrastructure that form a tree-like system architecture.

In effect, our requirements are that the system should be modular, so that support for
further sensors is easy to implement. Furthermore, the system should be robust, meaning
that common obstacles in data acquisition such as a temporarily unavailable internet
connection should not result in data loss. We also emphasize an interface that is easy to
understand and use, but without limiting functionality. Finally, we want the system to
be open to user input, as users should be able to provide information on what they are
currently doing, so data labeling is possible.

In Section 4.1, we describe the used technologies as well as the sensors that are
currently integrated into the system and can be used immediately without further cus-
tomization. In Section 4.2 we explain how the above requirements are satisfied through of
architectural and design decisions.

4.1. Technologies

In this section, we describe both hardware and software used with and in SensorHub.
This includes sensors, transmission protocols, smartphones, databases, as well as tools and
software libraries for data visualization and presentation.

4.1.1. Consumer Hardware for Data Acquisition

SensorHub aims to be unobtrusive and avoid frustration or behavioral changes in the
subjects. If possible, the sensors used for data acquisition should be small and attached
to the subjects comfortably. Hence, we decided to predominantly focus on consumer
hardware, since comfort is an important selling point in these products. However, we are
not limited to consumer hardware, since all kinds of sensors can potentially be used with
SensorHub, as long as these sensors can transfer data either via classic Bluetooth or BLE.
In the following, we describe the sensors in use as well as their respective purpose. For a
detailed comparison of the IMUs in use see [12].

Former Biovotion Everionr

is a device worn on the upper arm that combines a multitude of sensors. Among the 22
measured parameters are HR, blood oxygen saturation, and skin temperature. See https://
support.biofourmis.com/hc/en-us/articles/213108389-Overview-of-the-Everion-device-
hardware-components (accessed on 14 June 2021).

Bonsai Systemsr QuantiMotion
is an IMU equipped with a 3D accelerometer and a 3D gyroscope. With dimensions
of 36.5 mm × 32.0 mm × 13.5 mm and a weight of 15 g, it is sufficiently small to be
strap-mounted at arbitrary positions on the subject.

https://support.biofourmis.com/hc/en-us/articles/213108389-Overview-of-the-Everion-device-hardware-components
https://support.biofourmis.com/hc/en-us/articles/213108389-Overview-of-the-Everion-device-hardware-components
https://support.biofourmis.com/hc/en-us/articles/213108389-Overview-of-the-Everion-device-hardware-components
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Empatica E4
is a research-grade device for “real-time physiological data streaming”. The E4 is
equipped with a 3-axis accelerometer, an electrodermal activity (EDA) sensor, an in-
frared (IR) thermopile, and a photoplethysmography (PPG) sensor. It supports on-
board data recording as well as data streaming via BLE. See https://www.empatica.
com/research/e4/ (accessed on 14 June 2021).

GaitUp Physilogr

is an IMU featuring a 3D accelerometer for measuring linear acceleration, a 3D
gyroscope for measuring rotation, and a barometric sensor for measuring pressure
(we use the fifth generation Physilog 5). With dimensions of 47.5 mm × 26.5 mm ×
10 mm and a weight of 11 g it is sufficiently small to be strap-mounted at arbitrary
positions on the subject. See https://research.gaitup.com/physilog/ (accessed on 14
June 2021).

NeuroSky MindWave Mobile 2
is a consumer-grade one-channel EEG device providing a 512 Hz, 12 bit EEG signal as
well as derived metrics such as EEG power spectrums. The device is more comfortable
than medical-grade EEG devices and effectively limits the required over-the-air
bandwidth by recording only one EEG channel instead of the conventional more than
10 channels [13]. See https://store.neurosky.com/pages/mindwave (accessed on 14
June 2021).

Polar OH1
is an optical heart-rate sensor. It can be wrist-worn using an armband or attached to
the face using a swimming goggle strap clip. While optical heart rate measurement
is not as accurate as electrical heart rate measurement [14], the sensors tend to be
more comfortable since no chest strap is required and the position of the sensor can
be chosen more freely. See https://www.polar.com/us-en/products/accessories/
oh1-optical-heart-rate-sensor (accessed on 14 June 2021).

Polar H10
is a chest-worn electrical heart-rate sensor. The chest strap makes attachment to the
subject more complicated but measurements are considered to be more accurate [14].
See https://www.polar.com/us-en/products/accessories/h10_heart_rate_sensor
(accessed on 14 June 2021).

Shimmer3 GSR+
provides a 3D accelerometer for measuring linear acceleration, a 3D gyroscope for
measuring rotation, and a 3D magnetometer for determining its rotational position in
space. Furthermore, it can measure EDA and PPG as well as derived metrics such
as HR. With this, the Shimmer3 GSR+ adds physiological parameter measurement
to a standard IMU. See https://shimmersensing.com/product/shimmer3-gsr-unit/
(accessed on 14 June 2021).

Bittium Faros 180
is a one-channel, waterproof ECG sensor. The Bittium Faros 180 transmits data via
classic Bluetooth within a range up to 100 m. It enables ECG sampling up to 1000 Hz
and 3D acceleration sampling up to 100 Hz. See https://www.bittium.com/medical/
bittium-faros (accessed on 14 June 2021).

4.1.2. Classic Bluetooth and BLE as Data Transmission Standard

The sensors described above transmit data either via classic Bluetooth or BLE. Wher-
ever possible we decided to use BLE as uniform data transmission technology. Just like
conventional Bluetooth, BLE operates in the 2.4 GHz ISM band (frequency bands that
are reserved for industrial, scientific, and medical purposes and not used for telecom-
munication purposes) , but features significantly lower power consumption (1% to 50%
of conventional Bluetooth power consumption, depending on the use case, see https:
//www.bluetooth.com/learn-about-bluetooth/tech-overview/ (accessed on 14 June 2021)).

https://www.empatica.com/research/e4/
https://www.empatica.com/research/e4/
https://research.gaitup.com/physilog/
https://store.neurosky.com/pages/mindwave
https://www.polar.com/us-en/products/accessories/oh1-optical-heart-rate-sensor
https://www.polar.com/us-en/products/accessories/oh1-optical-heart-rate-sensor
https://www.polar.com/us-en/products/accessories/h10_heart_rate_sensor
https://shimmersensing.com/product/shimmer3-gsr-unit/
https://www.bittium.com/medical/bittium-faros
https://www.bittium.com/medical/bittium-faros
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
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This is important when using wearables since power supply comes from an integrated
battery of limited capacity. Higher power consumption would require larger batteries or
more frequent recharging.

4.1.3. Smartphones as Central Unit in Data Aggregation

Nowadays, smartphones are nearly ubiquitously available with about 3.5 billion users
worldwide (see https://www.statista.com/statistics/330695/number-of-smartphone-users-
worldwide (accessed on 14 June 2021)) and Android is the most prominent mobile operat-
ing system with about 85% market share (see https://www.idc.com/promo/smartphone-
market-share/os (accessed on 14 June 2021)). Most smartphones support BLE which can
be used for communication with the previously describes sensor hardware. On top of that,
smartphones offer a decent amount of sensors themselves.

4.1.4. Relational and Time-Series Databases

For persistence and central data storage, we are using PostgreSQL (see https://www.
postgresql.org/ (accessed on 14 June 2021)) as relational database management system
in conjunction with InfluxDB (see https://www.influxdata.com/ (accessed on 14 June
2021)) as time-series database. PostgreSQL is used for general-purpose data storage since
relational databases are easy to use in conjunction with object-oriented programming
languages using object-relational mappers (ORMs). However, for performance reasons, we
needed a special solution for storing sensor data which have to be stored quickly and are
rarely changed. Therefore, we decided to introduce InfluxDB for this very case.

4.1.5. Dashboard for Data Exploration

To make initial data exploration as simple as possible, we introduce a dashboard that
presents the measured data. For this, we utilized Flask (see https://palletsprojects.com/p/
flask/ (accessed on 14 June 2021)) as web framework and Bokeh (see https://bokeh.org/
(accessed on 14 June 2021)) as visualisation library. The dashboard also provides an interface
to define which data should be collected via the app. This includes defining the type of
sensor (e.g., Bonsai Systemsr QuantiMotion) and the respective sensor placement (e.g.,
right wrist).

4.2. Main Components

SensorHub consists of three main components: Smartphone app, backend, and dash-
board. These components were developed using agile software development methods,
specifically extreme programming (XP) as developed by Kent Beck [15]. The component dia-
gram in Figure 3 shows the interaction and technologies of the SensorHub system. The three
components and their respective purpose will be described in the following subsections.

4.2.1. Smartphone App

The SensorHub app is written in Kotlin (see https://kotlinlang.org/ (accessed on 14
June 2021)) and running on Android smartphones (versions from Android 6.0 Marshmallow
(API 23) are supported). The app is able to collect data from various sensor devices (cf.
Section 4.1) as well as internal sensors of the smartphone. For data collection from sensor
devices, Bluetooth connections to supported sensors are established and subsequently used
for data transmissions from the sensor devices to the app.

SensorHub offers the additional option to include EMA in form of questionnaires in
a study. These include both textual prompts and audio recordings. In order to be well-
prepared for different research questions and thus studies, we implemented Likert scales
as well as affective sliders [16] for the questionnaires. It can be configured individually if
and when a reminder should be sent to the subject.

The illustration in Figure 4 provides a clear overview of the individual roles, devices,
and the communication between the app operated by the subject and the dashboard

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.postgresql.org/
https://www.postgresql.org/
https://www.influxdata.com/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://bokeh.org/
https://kotlinlang.org/


Sensors 2022, 22, 408 9 of 18

operated by the researcher. Internal smartphone sensors can be accessed right away
via Kotlin.

Figure 3. Component diagram showing the three main components of SensorHub: App, Backend,
and Dashboard. Dashed arrows indicate usage.

The app is also responsible for initial data storage. Measured and received data are
kept on the smartphone until they can be transmitted to the backend component.

Furthermore, the app provides a tagging interface to label the data. The tags displayed
in the app were defined by the researcher via the dashboard for the respective study
and cannot be changed in the app. There are two types of tags: Single events and start-
stop events. Single events denote a specific point in time where some event happened,
for example, medication intake. Start-stop events denote a period of time, for example
over a performed exercise. The subject is responsible for selecting and deselecting the tags
during a recording. Tags are stored along with sensor data and, in the end, also transmitted
to the backend.

Figure 4. Overview of the communication happening within SensorHub. Sensor devices commu-
nicate with the app on the smartphone via Bluetooth. Every further communication happens via
HTTP(S).
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To ease the process of adding new sensors, the app features a modular architecture.
All modules for communication with sensor devices are subclasses of a Device superclass.
This simplifies adding new devices and ensures a consistent interface for every device.
Each module is contained in a dynamic delivery module, allowing the app to automatically
load only modules required for a study from the Google Play Store (see https://play.google.
com/ (accessed on 14 June 2021)). This lessens the load a study imposes on the user’s
phone storage.

4.2.2. Backend

The SensorHub Backend works as an intermediary between app and dashboard and
is responsible for persisting collected data. Architecturally, the backend consists of three
Docker (see https://www.docker.com/ (accessed on 14 June 2021)) containers:

1. A container running a Ktor web appliance (see https://ktor.io/ (accessed on 14 June
2021)) exposing a REST API for storing and retrieving data.

2. A container running an InfluxDB time-series database which is used by container 1
for storing sensor data (which are time-series).

3. A container running a PostgreSQL for non-time-series data, such as metadata on
subjects and study configurations. This container is also used by container 1.

We decided to use two different database management systems because performance
characteristics for the different data types in question are vastly different. Hence, two
tailored database solutions provide enhanced performance as compared to one general-
purpose solution. Sensor data are stored in InfluxDB, a times series database that can
readily handle large consecutive insert operations. Postgres is used for less data-intensive
use cases, such as user management and study meta configuration.

4.2.3. Dashboard

The SensorHub dashboard offers easy access to the data provided by the backend.
This includes time-series and non-time-series data (cf. Section 4.2.2). Furthermore, it is
possible to configure studies and visualize the uploaded data. The dashboard is split up
into two main components:

1. A Bokeh server for plotting data. From there, time-series data are requested from the
backend. Generated plots are then used by the following component 2.

2. A Flask web server that is responsible for everything but plotting data. This includes
handling requests to the backend, study configuration, and user management. Plots
are requested from component 1 via a WebSocket connection (cf. [17]).

5. User Interfaces

As described in the previous section SensorHub offers two user interfaces: the dash-
board for the researcher and the smartphone app for the subject. The interfaces were
designed to be as self-explanatory and clear as possible.

5.1. Dashboard Interface

The dashboard provides four areas. In the Sensor Data section, the raw data can be
filtered and downloaded. In addition, simple plots can already be created, which help the
researcher understand the data immediately.

In the Study area, new studies can be created and new subjects can be defined for
them. Subject accounts are only identifiable via a pseudonym that is not associated with
any personal information through the SensorHub infrastructure. Hence, subject accounts
are anonymous as far as SensorHub is concerned. SensorHub is thus not responsible for
the data storage of subjects’ personal data. Accordingly, the anonymous accounts for the
subjects must be submitted by the researcher themselves so that the subject can log into the
Android app and collect data for a study.

https://play.google.com/
https://play.google.com/
https://www.docker.com/
https://ktor.io/
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The Tags and Devices sections always refer to a specific study. In the Tags section, these
can be defined. These tags are then available to the subject in the app so that data can
already be labeled during data recording (cf. Section 4.2.1). Figure 5 shows the device
management page for a study. In the Devices section, any number of devices can be defined
for a study. In the Device Type drop-down menu, the researcher can choose from all the
wearable types that have been implemented so far. The devices already created for the
study are listed at the bottom of the page.

Figure 5. Device management page from SensorHub dashboard.

5.2. Android Smartphone App Interface

The scope of the smartphone app is also limited to the essential functions so that it
can be operated by any subject without much prior knowledge and with little effort. Once
a user logs in with their assigned account, the configuration for their study is automati-
cally downloaded.

All the user has to do is to pair the devices with the app (see Figure 6a for an example).
All wearables to be paired are listed under the screen Device Setup and can be connected
easily. To check whether the wearables are sending data, the user can click on the respective
device and get a live overview in the form of plots of the respective sensors (see Figure 6b).
The data recording can then be started in the Recordings area. The tags defined by the
researcher are available to the user here. As can be seen in Figure 6c, after data acquisition
is started, one can select and deselect one or more tags, depending on which activity is
currently being performed.

Furthermore, it is possible to define EMAs for studies. These can contain differ-
ent forms of questionnaires. Possible formats are questionnaires with Likert Scales (see
Figure 6d), audio files can be recorded (see Figure 6e) or affective sliders can be defined for
a survey (see Figure 6f). A reminder to fill out the questionnaires can be predefined so that
the user is reminded to provide the information at certain times during the day.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Different views from the SensorHub Android application. (a) Device Setup screen showing
the defined devices for a study, (b) Streaming data visualization of the sensors from the smartphone,
(c) Recordings screen with six predefined tags where one is active, (d) Exemplary questionnaire with a
Likert scale, (e) Example for an audio recording questionnaire, (f) Sample questionnaire screen using
affective sliders.

In the Upload section, all completed data recordings are available. These can be
uploaded independently by the user. However, since these raw data files are usually very
large, an unlimited internet connection is necessary for the upload.

SensorHub is still being developed and improved. Feedback from users is collected
and included in further development.

6. Evaluation and Discussion

Building SensorHub showed that recording data from different sensors at the same
time entails some challenges. Some of them are imposed by the technologies (e.g., hardware,
transmission protocols) in use and cannot be affected by us in a meaningful way. These
challenges will be discussed in this section as limitations. However, some other challenges
are based on SensorHub’s design and hence are under our control. These will be discussed
as future work. However, we first want to discuss potential use cases and explore general
themes on how to use the data generated by SensorHub.
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6.1. Potential Use Cases

SensorHub is a tool for data collection and as such mostly use-case agnostic. The only
prerequisite being that there needs to be an implemented sensor module for each type
of sensor in use. On that condition, all kinds of sensor data can be collected with the
SensorHub app and then downloaded via the SensorHub dashboard. This can be used for
studies in biomechanics, HAR, biomedical engineering, and many more areas. The collected
data are provided as tabular data files (comma-separated values (CSV), Apache Parquet)
and can be processed in any kind of way that suits the research question at hand. Examples
of means of data processing are statistical analysis, visualizations, and training of machine
learning models. Essentially, SensorHub is a tool that is agnostic to both the field of research
it is used in and the subsequently applied data processing steps, which depend on the
research question at hand.

In the following, we present two projects that we have carried out with SensorHub.
We present the role of the software and show the need for a multimodal sensor data
collection tool based on the results. Detailed information on the projects can be found in
the respective publications.

6.1.1. Project Exercise Exertion Prediction

This subsection describes the use of SensorHub in a project to predict perceived
exertion during resistance training to avoid injuries resulting from overtraining [18]. To this
end, IMU and ECG data from 16 participants performing squats on a flyhweel training
machine was collected with SensorHub. In total six IMUs (Physilog 5) and one ECG sensor
(Faros 180) streamed their data in real-time to the SensorHub application installed on an
Android smartphone. The IMU sensors were placed on the right and left thigh as well as
the right and left calf, one IMU was placed on the back and another one was placed on the
chest. Furthermore, the subjects were repeatedly asked about their subjective exhaustion
using Rating of Perceived Exertion (RPE) measured by means of a Borg scale. This scale is
a numerical scale that ranges from 6 to 20, with 6 meaning no exertion at all and 20 meaning
maximal exertion. The data was analyzed using multiple regressors, such as Support Vector
Machines (SVMs), Random Forests, and Gradient Boosting Regression Trees. Detailed
information about the study can be found in the corresponding paper. Regardless of the
performance of individual models, the results improved significantly when combining the
movement data (collected with IMU sensors) and the HRV (collected with an ECG sensor),
instead of using solely IMU data. The results in terms of the coefficient of determination
(R2) and mean squared error (MSE) are shown in Table 2. R2 stands for the proportion of
deviation from the target value that a model reproduced. For a perfect prediction R2 = 1,
for a mean prediction R2 = 0, and for R2 < 0 the prediction is worse. Ultimately, the study
shows that a multimodel sensor data collection tool, like SensorHub, not only facilitates
data acquisition and processing, but also contributes to better results.

Table 2. Results for the models Gradient Boosting Regression Tree (GBRT), SVM with Linear (SVRL)
and Radial Basis Function (SVRR), and Random Forest (RF) for using either solely IMU data or a
combination of IMU and HRV data.

R2 MSE
Model IMU IMU + HRV IMU IMU + HRV

GBRT −0.01 ± 0.12 0.48 ± 0.30 2.14 ± 0.49 1.45 ± 0.44
SRVL −0.03 ± 0.13 0.40 ± 0.18 2.19 ± 0.59 1.71 ± 0.67
SVRR −0.05 ± 0.26 0.22 ± 0.19 2.24 ± 0.81 1.89 ± 0.49
RF 0.08 ± 0.10 0.52 ± 0.06 2.09 ± 0.64 1.51 ± 0.45

6.1.2. Project EatMaps Using EMAs

In the following, we will present the use of SensorHub in our project EatMaps and
explain why SensorHub offers significant added value for projects of this kind.
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The EatMaps project is funded by the Federal Ministry for Economic Affairs and
Energy, Germany. In this project, we want to observe how affective states and user contexts
correlate with eating habits in everyday life. The motivation for this study comes from
the increasing number of diabetic patients. The global prevalence of diabetes among
adults above 18 years has risen from 4.7% in 1980 to 8.5% in 2014 [19], with obesity as
the leading risk factor for type 2 diabetes. In addition, stress is suspected of promoting
excessive food intake and weight gain [20]. Moreover, affective states such as anxiety, anger,
depressed mood, and other negative emotions also correlate with eating behavior [21]. We
are conducting this study along with the Oviva AG (https://oviva.com/de/de/ (accessed
on 14 June 2021)), which is our industrial partner for this third-party funded project. Oviva
has several years of expertise in of monitoring the eating habits of diabetic and obese
patients. They provide and support digital solutions for patient-oriented therapy to change
dietary behavior via a mobile application.

In order to investigate this multitude of influencing factors in more detail, different
devices and signals are required. We collected different types of data, including physio-
logical and movement signals, internal sensor data from the smartphone, and additional
information in form of EMAs. So far, in a study, we have recorded data from 11 subjects
over an extended period of time with at least 8 h per day.

To collect physiological and motion signals, and to identify the eating activities, we
used the Shimmer3 GSR+ devices (for more information please refer to Section 4.1.1) with
a sampling frequency between 50–52 Hz. The following signals and values were recorded:
PPG, EDA, temperature, pressure, and IMU data. We used SensorHub’s questionnaire
feature to collect EMA data and additional internal sensor data, as e.g., IMU data, Global
Positioning System (GPS), light and Bluetooth data which are used to understand the social
interaction. The EMA data included questionnaires that are related to stress, affective states,
wake-up time, social interaction, background noise recordings, and voice prompts about
users’ moods or feelings. The EMAs were polled every 2 h from 9:00 a.m. to 9:00 p.m.
The subjects were also asked to take images of the food they eat when they are using
the sensors.

With the help of EMAs and GPS data, we can gain insight into a person’s emotional
state and analyze whether it changes based on location, for example. Therefore, we asked
for the arousal and valence (on a scale from 0 to 100 [16]) and the stress level (from 0
meaning not stressed at all to 4 meaning very stressed). Specific locations, as e.g., at home or in
public transport, were derived by using the GPS signal. An example visualization of one
subject’s data from one day can be found in Figure 7. Note that the three-part division of
the affective state scale means low between 0 and 45, neutral between 45 and 55 and high
from 55. Here, for example, it can be seen that for this subject the stress level was always
very low, even when the subject was very aroused.

The big advantage of using SensorHub in this study was having all the necessary
functions integrated into one application. The subjects could fill out the questionnaires via
SensorHub as well as connect the sensors and have data recorded. In addition, the internal
sensors of the smartphone could be used.

6.2. Technical Evaluation

To evaluate whether SensorHub’s backend is capable of handling incoming data with
sufficient speed, we performed a data ingestion benchmark on the backend as a stress
test. The SensorHub backend is designed to ingest sensor data from multiple patients
faster than the sampling rate to allow sporadic upload of data cached on the smartphone.
To verify that this requirement has been fulfilled, we conducted benchmarks with the
open-source WRK tool (see https://github.com/wg/wrk (accessed on 14 June 2021)), that
allows to specify a duration as well as the number of threads creating a specific number
of connections. To mimic a connection with the app’s upload module, batches of 3000
random sensor data were created. Such batches were continuously uploaded for a duration
of 10 min in 8 threads on a single machine utilizing 64 connections overall. As this creates

https://oviva.com/de/de/
https://github.com/wg/wrk
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mainly network load for the machine running WRK, that in turn mostly needs to wait for
responses, this is not limited by the requesting machine’s CPU. The virtual machine (VM)
running the backend for these tests had 3 virtual cores and 3GB of RAM. During the entire
test run, the 3 cores were loaded on average to 49%± 21.47% with a minimum of 3% and
a maximum of 93%. Once the Java virtual machine (JVM) completed its warm-up phase,
the memory load of the entire system did not exceed 2 GB. This includes the PostgreSQL
DB and the InfluxDB storing the data on disk. The average network ingest speed was
12.7 MB/s ± 1.08 MB/s, while the InfluxDB had to write on average 3.4 MB/s± 2.7 MB/s
to disk, suggesting a large compression factor with regards to the JSON format that the
backend accepts.

Figure 7. Example visualization of the EMA and GPS data from one subject and one day.

Ultimately, 12,500 requests were made with an average latency of 3 s± 0.793 s. This
benchmark proves that studies producing samples at a rate of up to 850 Hz (e.g., using an
ECG sensor with 500 Hz that also records 3 IMU axes at 100 Hz plus 50 anomaly tags per
second) are feasible for up to 8 people who have been unable to upload for an hour and
are now attempting to upload at exactly the same time (as 12,500 requests of 3000 sensor
data equal 37,500,000 data points). During normal usage, the upload is synchronized, so
the benchmark represents a worst-case scenario.

6.3. Limitations

The technologies in use, i.e., consumer sensing hardware, mobile phones, and the
Bluetooth transmission standard, expose SensorHub to some limitations. Most notable are
quantitative limits like a maximum number of concurrently connected sensors, limited data
rates, and packet loss, as well as battery drainage. Nevertheless, the first measurements
show that by using BLE a study over a longer period of time (~1 h) is possible even with
many devices (5 IMU sensors) and high frequency (512 Hz) without significant battery
losses (less than 3%). But there are also qualitative limitations, as we were not able to access
raw data with some devices. These limitations are discussed in the following.
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6.3.1. Data Rate Limitations and Packet Loss

While BLE theoretically features data rates of up to 2 Mbit/s, practical application
throughput is much lower, i.e., 0.27–1.37 Mbit/s (https://www.novelbits.io/bluetooth-5-
speed-maximum-throughput/ (accessed on 14 June 2021)). This causes issues when larger
amounts of data are to be transferred, as it is for example the case with EEG signals. Even
with a smaller set-up of 16 electrodes, 125 Hz sampling frequency, and 32 bit per sample,
an EEG produces 16 · 125 s−1 · 32 bit = 64 kbit/s which might exceed the capabilities of
certain BLE chipsets in some cases, especially when not only EEG is recorded but also data
from other sensors at the same time.

In addition to data rate limitations, we also experienced packet loss when multiple
sensors were connected at the same time. For instance, in the data received by phone,
the sampling frequency appeared to drop occasionally in a manner as if divided by small
integers ( f ′s = fs/i for i = 2, 3, . . . ). Our investigation shows that data loss increases when
the number of concurrently connected sensors increases. Hence, we hypothesize that data
is lost whenever two or more data packets arrive at the same time because the phone can
only handle one data packet at a time.

However, both data rate limitations and packet loss seem to be primarily a theoretical
problem with only minor practical relevance. This is shown by two evaluation studies we
performed using a Pixel 4a (Google, California) phone. Firstly, in a study with 21 partici-
pants performing one session each that was conducted with SensorHub, a 1000 Hz ECG
was recorded together with its 100 Hz 3-axis accelerometer without any connection or data
loss. Secondly, during another set of experiments, we were consistently able to record
6 IMUs with a combined data rate of 2304 Hz, i.e., 384 Hz per IMU, without any data loss.

6.3.2. Upper Limits in Number of Sensors

There are limitations in software and hardware on the maximum number of simul-
taneous connections an Android phone can have. For one, the oldest Android version
supported by our App, i.e., Android 6, has a limit of 7 concurrently connected BLE devices
(see https://android.googlesource.com/platform/external/bluetooth/bluedroid/+/master/
include/bt_target.h#1428 (accessed on 14 June 2021) and https://android.googlesource.com/
platform/system/bt/+/android-6.0.1_r81/bta/gatt/bta_gattc_int.h (accessed on 14 June
2021)). However, as this is not a publicly specified value, a specific study must verify the
number of devices supported by the handset to be used. While no documents exist to show
the number of devices supported by specific smartphones, many experience reports can be
found (see https://stackoverflow.com/a/41367864, https://stackoverflow.com/a/408903
25, and https://stackoverflow.com/a/37756809 (accessed on 14 June 2021)).

Hardware limitations can also be introduced due to sharing the same antenna for
Wi-Fi and Bluetooth (see https://interrupt.memfault.com/blog/ble-throughput-primer#
coexistence (accessed on 14 June 2021)).

6.3.3. Missing Raw Data Access

With many consumer-grade wearable sensors, especially smartwatches, we were
unable to determine whether access to raw sensor data (e.g., the PPG signal) is provided or
only preprocessed data (e.g., pulse frequency) are available. Since we do not want to rely
on proprietary preprocessing algorithms, SensorHub currently supports only a selection of
sensors where raw data access could be confidently assumed beforehand (see Section 4.1).

6.4. Future Work

As common in software development, SensorHub also faced the trade-off of function-
ality vs. simplicity [22]. We faced the design decision of whether we wanted to implement
SensorHub in the style of a minimal viable product as a tool for recording sensor data
with a phone and nothing more (no backend, no dashboard) or if we wanted to have a
platform approach that is implementation-wise more complicated but also offers more
functionality for researchers. Nevertheless, with additional functionality comes additional

https://www.novelbits.io/bluetooth-5-speed-maximum-throughput/
https://www.novelbits.io/bluetooth-5-speed-maximum-throughput/
https://android.googlesource.com/platform/external/bluetooth/bluedroid/+/master/include/bt_target.h#1428
https://android.googlesource.com/platform/external/bluetooth/bluedroid/+/master/include/bt_target.h#1428
https://android.googlesource.com/platform/system/bt/+/android-6.0.1_r81/bta/gatt/bta_gattc_int.h
https://android.googlesource.com/platform/system/bt/+/android-6.0.1_r81/bta/gatt/bta_gattc_int.h
https://stackoverflow.com/a/41367864
https://stackoverflow.com/a/40890325
https://stackoverflow.com/a/40890325
https://stackoverflow.com/a/37756809
https://interrupt.memfault.com/blog/ble-throughput-primer#coexistence
https://interrupt.memfault.com/blog/ble-throughput-primer#coexistence
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complexity. This needs to be reduced or hidden externally in order to achieve user-friendly
interfaces for all users of the system (not only subjects, but also researchers and system
administrators). We hence plan to further improve SensorHub through multiple iterations
of user studies.

Furthermore, there will always be new devices that could be interesting for studies
and thus should be implemented in SensorHub. While many different sensors for different
modalities are already implemented, there are constantly new sensor requirements that
come up while using SensorHub. Hence, a substantial amount of future work will be the
implementation of more sensor types to be used with SensorHub.
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