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Abstract. For two planar graph G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 )
sharing a common subgraph G = G 1 ∩G 2 the problem Simultaneous
Embedding with Fixed Edges (SEFE) asks whether they admit pla-
nar drawings such that the common graph is drawn the same. Previous
algorithms only work for cases where G is connected, and hence do not
need to handle relative positions of connected components. We consider
the problem where G, G 1 and G 2 are not necessarily connected.

First, we show that a general instance of SEFE can be reduced in
linear time to an equivalent instance where V 1 = V 2 and G 1 and G 2

are connected. Second, for the case where G consists of disjoint cycles, we
introduce the CC-tree which represents all embeddings of G that extend
to planar embeddings of G 1 . We show that CC-trees can be computed
in linear time, and that their intersection is again a CC-tree. This yields
a linear-time algorithm for SEFE if all k input graphs (possibly k > 2)
pairwise share the same set of disjoint cycles. These results, including the
CC-tree, extend to the case where G consists of arbitrary connected com-
ponents, each with a fixed embedding. Then the running time is O(n2).

1 Introduction

To enable a human reader to compare different relational datasets on a common
set of objects it is important to visualize the corresponding graphs in such a
way that the common parts of the different datasets are drawn as similarly
as possible. This leads to the fundamental theoretical problem SEFE, asking
for two graphs G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) with the common graph
G = (V,E) = (V 1 ∩ V 2 , E 1 ∩ E 2 ), whether there are planar drawings of G 1

and G 2 such that the common graph G is drawn the same in both.
The problem SEFE and its variants have been studied extensively in the past

years; see [3] for a survey. As there are planar graphs that cannot be embedded
simultaneously, the question of deciding whether given graphs admit a SEFE
is of high interest. Gassner et al. [8] show that it is NP-complete to decide
SEFE for three or more graphs. For two graphs the complexity status is open.
However, there are several approaches yielding efficient algorithms for special
cases. Angelini et al. [1] solve SEFE if one of the graphs has a fixed embedding.
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Fowler at al. show how to solve SEFE efficiently if G 1 and G have at most two
and one cycles, respectively [7]. Haeupler et al. solve SEFE in linear time for the
case that the common graph is biconnected [10]. Angelini et al. obtain the same
result with a completely different approach [2]. The currently least restrictive
result by Bläsius and Rutter [4] shows that SEFE can be solved in polynomial
time for the case that G 1 and G 2 are biconnected and G is connected.

Jünger and Schulz [11] show that two planar graphs G 1 and G 2 admit a
SEFE if and only if they admit planar embeddings that coincide on G. All
previous testing algorithms assume that G is connected, implying that it is
sufficient to enforce the common edges incident to each vertex to have the same
circular ordering in both embeddings. Especially in the result by Bläsius and
Rutter [4] this is heavily used, as they explicitly consider only orders of edges
around vertices using PQ-trees. However, if the common graph is not required
to be connected, we additionally have to care about the relative positions of
connected components to one another, which introduces an additional difficulty.

Contribution and Outline. We consider disconnectivity in SEFE problems. We
give a linear-time algorithm that, for each instance G 1 and G 2 of SEFE,

v

Fig. 1. Bold edges be-
long to both graphs,
the dashed and thin
edges are exclusive

computes an equivalent instance G 1 ′
, G 2 ′ with G 1 ⊆

G 1 ′ and G 2 ⊆ G 2 ′ such that all vertices are common
and both graphs are connected (Section 2). Note that
it is generally not possible to extend G 1 and G 2 to an
equivalent instance such that G is connected; see Fig. 1.
In Section 3 we tackle the problem SEFE where the com-
mon graph G is disconnected, assuming that the circular
order of edges around vertices in G is already fixed and
the task is to find compatible relative positions of the con-
nected components of G, such that they can be extended
to planar embeddings of G1 and G2. Note that this con-
trasts previous work, where G is generally assumed to be
connected and hence relative positions can be neglected.
Initially, we consider the special case where G consists of
a set C of disjoint cycles. We present a novel data struc-
ture, the CC-tree, that for a planar graph G containing C represents all planar
embeddings of C that are induced by a planar embedding of G. We show that
the intersection of two CC-trees is again a CC-tree. CC-trees can be computed
and intersected in linear time; this immediately gives a linear-time algorithm
for SEFE of graphs G 1 , . . . , Gk whose pairwise intersection is C. In Section 4,
we extend this to the case where the common graph may contain arbitrary con-
nected components, each with a prescribed planar embedding; in this case the
running-time is O(n2).

2 Connecting Disconnected Graphs

Let G 1 = (V,E 1 ) and G 2 = (V,E 2 ) be two planar graphs with common graph
G = (V,E) with E = E 1 ∩E 2 . We show that the problem SEFE can be reduced
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to the case where G 1 and G 2 are connected. We can assume that G 1 ∪ G 2 is
connected, otherwise the connected components can be handled independently.
We first ensure that G 1 is connected without increasing the number of connected
components in G 2 . Afterwards we apply the same steps to G 2 .

Let k 1 and k 2 denote the number of connected components of G 1 and G 2 ,
respectively, and assume k 1 > 1. Since G 1 ∪ G 2 is connected there exists an
edge e 2 = {v1, v2} ∈ E 2 connecting vertices from different connected compo-
nents H 1

1 and H 1
2 in G 1 . We construct the augmented instance (G 1

+, G
2
+) with

respect to the edge e 2 by adding a new vertex v12 and edges e = {v1, v12} ∈ E
and e 1 = {v12, v2} ∈ E 1 . Note that G 1

+ has k 1 − 1 connected components, and
the number of connected components in G 2 does not change.

Lemma 1. The SEFE instances (G 1 , G 2 ) and (G 1
+, G

2
+) are equivalent.

Proof. If (G 1
+, G

2
+) admits a SEFE, then obviously (G 1 , G 2 ) does. For the con-

verse assume that (G 1 , G 2 ) has a SEFE (E 1 , E 2 ) inducing the embedding E
on G. We construct an embedding E ′ 1 such that (i) (E ′ 1 , E 2 ) is a SEFE, and
(ii) the vertices v1 and v2 lie on a common face in E ′ 1 . Then we can add the
vertex v12 together with the two edges e and e 1 , yielding a SEFE of (G 1

+, G
2
+).

Consider a face f of E . For i = 1, 2, the embedding E i of G i splits f into a
set of faces F i (f) = {f i

1 , . . . , f
i
k }. We say that a face f i ∈ F i (f) is contained

in f . Note that every face of E i is contained in exactly one face of E .
The edge e 2 = {v1, v2} is incident to two faces f 2

1 and f 2
2 of E 2 . Since

e 2 belongs exclusively to G 2 , they are both contained in the same face f of E ;
without loss of generality f is the outer face. In E 1 , the face f may be subdivided
into several faces. However, we can find faces f 1

1 and f 1
2 of E 1 , both contained

in f , such that v1 and v2 are incident to f 1
1 and f 1

2 , respectively. Since v1
and v2 belong to distinct components of G 1 , there exists a closed curve C in the
plane separating G 1 into two subgraphs G 1

1 and G 1
2 lying to the left and to the

right of C, and containing v1 and v2, respectively. Let E 1
1 and E 1

2 denote the
planar embeddings of G 1

1 and G 1
2 induced by E 1 . We now choose f 1

1 and f 1
2

as the outer face of E 1
1 and E 1

2 , respectively. Note that this uniquely induces
a planar embedding E ′ 1 of G where v1 and v2 are on the outer face (property
(ii)). Moreover, since f 1

1 and f 1
2 are both contained in the outer face f of E , the

embedding of G is preserved. Hence, (E ′ 1 , E 2 ) is still a SEFE. ��

Iteratively applying the operation to suitably chosen edges yields the following.

Theorem 1. There is a linear-time algorithm that computes for any instance
of SEFE an equivalent instance such that both graphs are connected.

3 Disjoint Cycles

In this section, we consider the problem SEFE for the case that the common
graph consists of a set of disjoint cycles. Due to Theorem 1 we may assume that
both graphs are connected. In Section 3.1 we show how to solve this special case
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of SEFE in polynomial time. In Section 3.2 we introduce a tree-like data struc-
ture, the CC-tree, representing all planar embeddings of a set of cycles contained
in a single graph that can be induced by an embedding of the whole graph. We
additionally show that the intersection of the set of embeddings represented by
two CC-trees can again be represented by a CC-tree, yielding a solution for
SEFE even for the case of more than two graphs if all graphs have the same in-
tersection consisting of a set of disjoint cycles. We further show how to compute
and intersect CC-trees in linear time. Due to space constraints, some proofs are
omitted. Detailed proofs can be found in the full version of this paper, which is
in the appendix. Before we start, we fix some definitions.

Embeddings of Disjoint Cycles. Let C1, . . . , Ck be a set of disjoint simple cycles.
We consider embeddings of these cycles on the sphere. Since a single cycle has a
unique embedding on the sphere only their relative positions are of interest. To
be able to use the terms “left” and “right”, we direct the cycles arbitrarily. We
denote the relative position of a cycle Cj with respect to a cycle Ci by posCi

(Cj).
More precisely, we have posCi

(Cj) = “left” and posCi
(Cj) = “right”, if Cj lies

on the left and right side of Ci, respectively. We call an assignment of a value
“left” or “right” to each of these relative positions a semi-embedding of the cycles
C1, . . . , Ck. Note that the embeddings are a strict subset of the semi-embeddings,
i.e., not every semi-embedding yields an embedding of the cycles. We extend our
notation to relative positions of arbitrary subgraphs. For example the relative
position of a single vertex v with respect to a cycle C is denoted by posC(v).

SPQR-Tree. As connectivity plays an important role in this work we fix some
basic definitions in the following. A graph is connected if there exists a path
between any pair of vertices. A separating k-set is a set of k vertices whose re-
moval disconnects the graph. Separating 1-sets and 2-sets are cutvertices and
separation pairs, respectively. A connected graph is biconnected if it does not
have a cut vertex and triconnected if it does not have a separation pair. The
maximal biconnected components of a graph are called blocks. The cut compo-
nents with respect to a separating k-set S are the maximal subgraphs that are
not disconnected by removing S.

We use the SPQR-tree introduced by Di Battista and Tamassia [5,6] to repre-
sent all planar embeddings of a biconnected planar graph G. The SPQR-tree T
of G is a decomposition of G into triconnected components along its split pairs,
where a split pair is either a separating pair or a pair of adjacent vertices. We
define the SPQR-tree to be unrooted, representing embeddings on the sphere,
that is planar embeddings without a designated outer face.

Let {s, t} be a split pair and let H1 and H2 be two subgraphs of G such that
H1 ∪ H2 = G and H1 ∩ H2 = {s, t}. Consider the tree consisting of two nodes
μ1 and μ2 associated with the graphs H1 + {s, t} and H2 + {s, t}, respectively.
These graphs are called skeletons of the nodes μi, denoted by skel(μi), and the
special edge {s, t} is a virtual edge. The edge connecting the nodes μ1 and μ2

associates the virtual edges in skel(μ1) and skel(μ2) with each other. The expan-
sion graph exp({s, t}) of a virtual edge {s, t} is the subgraph of G it represents,
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Fig. 2. The SPQR-tree of a biconnected planar graph. The nodes µ1, µ3 and µ5 are
P-nodes, µ2 is an R-node and µ4 is an S-node; Q-nodes are not shown.

that is in skel(μ1) the expansion graph of {s, t} is H2 and the expansion graph of
{s, t} in skel(μ2) is H1. Now a combinatorial embedding of G uniquely induces
a combinatorial embedding of skel(μ1) and skel(μ2) and vice versa.

Applying this kind of decomposition systematically yields the SPQR-tree; see
Fig. 2. The skeletons of the internal nodes of the SPQR-tree are either a cycle
(S-node), a bunch of parallel edges (P-node) or a triconnected planar graph
(R-node). The leaves are Q-nodes, and their skeleton consists of two vertices
connected by a virtual and a normal edge. Thus, the only possible embedding
choices are flipping skeletons of R-nodes (triconnected graphs have a unique
embedding up to a flip [12]) and ordering the edges in skeletons of P-nodes. The
SPQR-tree can be computed in linear time [9].

3.1 A Polynomial-Time Algorithm

Let (G 1 , G 2 ) be an instance of SEFE with common graph G consisting of
pairwise disjoint simple cycles C1, . . . , Ck. We first assume that G 1 and G 2

are biconnected and show later how to remove this restriction. Our approach is
to formulate constraints on the relative positions of the cycles to one another
ensuring that G 1 and G 2 induce the same semi-embedding of the common graph
G. We show implicitly that the resulting semi-embedding is really an embedding
by showing that the graphs G 1 and G 2 have planar embeddings inducing this
semi-embedding. Note that this only works for the case that G 1 and G 2 are
connected. Thus, our approach crucially relies on the result from Section 2.

Biconnected Graphs. Before considering two graphs, we determine for a single
graph the possible embeddings it may induce on a set of disjoint cycles contained
in it. Let G = (V,E) be a biconnected graph with SPQR-tree T , let C be a simple
directed cycle in G and let μ be a node in T . Obviously, C is either completely
contained in the expansion graph of a single virtual edge of μ or C induces a
simple directed cycle of virtual edges in skel(μ). We say that C is contracted and
a cycle in skel(μ) in the former and latter case, respectively. Consider the case
where C is a cycle in skel(μ) and let κ denote this cycle. By fixing the embedding
of skel(μ) the virtual edges in skel(μ) not contained in κ split into two groups,
some lie to the left and some to the right of κ. Obviously, a vertex v ∈ V \V (C)
in the expansion graph of a virtual edge that lies to the left (to the right) of κ
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lies to the left (to the right) of C in G, no matter which embedding is chosen for
the skeletons of other nodes. In other words, the value of posC(v) is completely
determined by this single node μ. We show that for every vertex v ∈ V \ V (C)
there is a node μ containing C as a cycle such that the virtual edge in skel(μ)
containing v in its expansion graph is not contained in the cycle κ induced by C.
Hence a node μ in T determining posC(v) always exists. Extending this to a pair
of cycles yields the following lemma.

Lemma 2. Let G be a biconnected planar graph with SPQR-tree T and let C1

and C2 be two disjoint simple cycles in G. There is exactly one node μ in T
determining posC1

(C2). Moreover, C1 is a cycle κ1 in skel(μ) and C2 is either
a cycle or contracted in a virtual edge not contained in κ1.

Now consider a set of pairwise disjoint cycles C = {C1, . . . , Ck} in G. Obviously
S- and Q-nodes do not determine any relative positions. Let μ be an arbitrary
P- or R-node in the SPQR-tree T and let C ∈ C be a cycle that occurs as a
cycle κ in skel(μ).

Let μ be a P-node with vertices s and t and parallel virtual edges ε1, . . . , ε�
between them. Then κ consists of two parallel virtual edges, without loss of gen-
erality ε1 and ε2. By disjointness no other cycle C′ ∈ C is a cycle in skel(μ) as C′

would also contain s and t. Thus, every other cycle C′ is contracted in skel(μ),
and belongs to one of the virtual edges ε1, . . . , ε�. If it belongs to ε1 or ε2, which
are contained in κ, then posC(C

′) is not determined by μ. Otherwise, C′ be-
longs to one of the virtual edges ε3, . . . , ε�, and posC(C

′) is determined by the
relative position of this virtual edge with respect to the cycle κ. This relative
position can be chosen for every virtual edge ε3, . . . , ε� arbitrarily and inde-
pendently. However, if two cycles Ci and Cj belong to the same virtual edge
ε ∈ {ε3, . . . , ε�}, their relative position with respect to C is the same, that is
posC(Ci) = posC(Cj), for every embedding of G.

Let μ be an R-node. For the moment, we consider the embedding of skel(μ)
to be fixed. The relative position posC(C

′) of a cycle C′ �= C is determined by μ
if and only if C′ is a cycle in skel(μ) or if it is contracted and belongs to a virtual
edge not contained in κ. Since we consider only one of the two embeddings
of skel(μ) at the moment, posC(C′) is fixed to one of the two values “left” or
“right” in this case. The same can be done for all other cycles that are cycles
in skel(μ) yielding a fixed value for all relative positions that are determined
by μ. Finally, we have a partition of all positions determined by μ into the set of
positions P1 = {posCa(1)

(Cb(1)), . . . , posCa(r)
(Cb(r))} all having the value “left”

and the set of positions P2 = {posCc(1)
(Cd(1)), . . . , posCc(s)

(Cd(s))} having the
value “right”. Now if the embedding of skel(μ) is not fixed anymore, we have only
the possibility to flip it. By flipping, all the positions in P1 change to “right”
and all positions in P2 change to “left”. Hence, we obtain that the equation
posCa(1)

(Cb(1)) = · · · = posCa(r)
(Cb(r)) �= posCc(1)

(Cd(1)) = · · · = posCc(s)
(Cd(s))

is satisfied for every embedding of C1, . . . , Ck induced by an embedding of G.
To sum up, we obtain a set of (in)equalities relating the relative positions of

cycles to one another. We call these constraints the PR-node constraints with
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respect to the biconnected graph G. Obviously the PR-node constraints are
necessary in the sense that every embedding of G induces an embedding of the
cycles C1, . . . , Ck satisfying these constraints. In the full version of the paper
we show that, conversely, given a semi-embedding EC satisfying the PR-node
constraints, one can choose suitable embeddings for all skeletons of the SPQR-
tree yielding a planar embedding E of G inducing EC . Note that this implicitly
shows that EC is not only a semi-embedding but also an embedding of C.

Lemma 3. Let G be a biconnected planar graph containing the disjoint cycles
C1, . . . , Ck. Let further EC be a semi-embedding of these cycles. There is an
embedding E of G inducing EC if and only if EC satisfies the PR-node constraints.

Now let G 1 and G 2 be two biconnected planar graphs with the common graph
G consisting of pairwise disjoint simple cycles C1, . . . , Ck. If we find a semi-
embedding E of the cycles that satisfies the PR-node constraints with respect
to G 1 and G 2 simultaneously, we can use Lemma 3 to find embeddings E 1 and
E 2 for G 1 and G 2 both inducing the embedding E on the common graph G.
Thus, satisfying the PR-node constraints with respect to both G 1 and G 2 is
sufficient to find a SEFE. Conversely, given a pair of embeddings E 1 and E 2

inducing the same embedding E on G, this embedding E needs to satisfy the
PR-node constraints with respect to both, G 1 and G 2 , which is again due to
Lemma 3. Since the PR-node constraints form a set of boolean (in)equalities
we can express them as an instance of 2-Sat. As this instance has polynomial
size and can easily be computed in polynomial time, we obtain the following
theorem.

Theorem 2. SEFE can be solved in O(n2) time for biconnected graphs whose
common graph is a set of disjoint cycles.

Allowing Cutvertices. Next, we generalize our observations to graphs that
may contain cutvertices. As before, we consider a single graph G containing a set
of disjoint cycles C = {C1, . . . , Ck} first. Let C ∈ C be one of the cycles and let
v be a cutvertex contained in the same block B that contains C. The cutvertex
v splits G into � components H1, . . . , H�. Assume without loss of generality that
B (and with it also C) is contained in H1. We distinguish between the cases that
v is contained in C and that it is not.

If v is not contained in C, then the relative position posC(v) is determined
by the embedding of the block B and it follows that all the subgraphs H2, . . . , H�

lie on the same side of C as v does. It follows from the biconnected case that
posC(v) is determined by the embedding of the skeleton of exactly one node μ
in the SPQR-tree of B. Obviously, the conditions that all cycles in H2, . . . , H�

are on the same side of C as v can be easily added to the PR-node constraints
stemming from the node μ; call the resulting constraints the extended PR-node
constraints.

If v is contained in C, the relative position posC(v) does not exist. Assume
the embedding of each block is already chosen. Then for each of the subgraphs
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H ∈ {H2, . . . , H�} the positions posC(H) can be chosen arbitrarily and inde-
pendently. In this case we say for a cycle C′ in H that its relative position
posC(C

′) is determined by the embedding chosen for the cutvertex v. Obviously,
in every embedding of G a pair of cycles Ci and Cj both belonging to the same
subgraph H ∈ {H2, . . . , H�} lie on the same side of C yielding the equation
posC(Ci) = posC(Cj). This equation can be set up for every pair of cycles in
each of the subgraphs, yielding the cutvertex constraints with respect to v.

Clearly, a semi-embedding EC on the cycles C1, . . . , Ck that is induced by
an embedding E of the whole graph always satisfies the extended PR-node and
cutvertex constraints. As before, the converse is also true; the proof is omitted.

Lemma 4. Let G be a connected planar graph containing the disjoint cycles
C1, . . . , Ck. Let further EC be a semi-embedding of these cycles. There is an
embedding E of G inducing EC if and only if EC satisfies the extended PR-node
and cutvertex constraints.

This result again directly yields a polynomial-time algorithm to solve SEFE for
the case that both graphs G 1 and G 2 are connected and their common graph
G consists of a set of disjoint cycles. Moreover, requiring both graphs to be
connected is not really a restriction due to Theorem 1. The extended PR-node
and cutvertex constraints can be computed similarly as for Theorem 2, yielding
the following theorem.

Theorem 3. SEFE can be solved in O(n2) time if the common graph consists
of disjoint cycles.

3.2 A Compact Representation of All Simultaneous Embeddings

In the previous section we showed that SEFE can be solved in polynomial
time for the case that the common graph consists of disjoint cycles. In this
section we describe a data-structure, the CC-tree, representing all embeddings
of a set of disjoint cycles that can be induced by an embedding of a connected
graph containing them. Afterwards, we show that the intersection of the sets of
embeddings represented by two CC-trees can again be represented by a CC-tree.
Moreover, we can show that the CC-tree and the intersection of two CC-trees
can be computed in linear time, yielding an optimal linear-time algorithm for
SEFE for the case that the common graph consists of disjoint cycles. Note that
this algorithm obviously extends to the case where k graphs G 1 , . . . , Gk are
given such that they all intersect in the same common graph G consisting of a
set of disjoint cycles.

C-Trees and CC-Trees. Let C = {C1, . . . , Ck} be a set of disjoint cycles. A
cycle-tree (C-tree) TC on these cycles is a minimal connected graph containing C.
Obviously, every embedding of TC induces an embedding of the cycles. We say
that two embeddings of TC are equivalent if they induce the same embedding
of C and we are only interested in the equivalence classes with respect to this
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equivalence relation. An embedding E of the cycles in C is represented by TC
if it admits an embedding inducing E . Note that contracting each of the cycles
C1, . . . , Ck in a C-tree to a single vertex yields a spanning tree on these vertices.
In most cases we implicitly assume the cycles to be contracted such that TC can
be treated like a tree.

The embedding choices that can be made for TC are of the following kind. For
every edge e = {C,C′} we can decide to put all cycles in the subtree attached
to C via e either to the left or to the right of C. In particular, we can assign a
value “left” or “right” to the relative position posC(C

′). Moreover, by fixing the
relative positions posC(C

′) and posC′(C) for every pair of cycles C and C′ that
are adjacent in TC , the embedding represented by TC is completely determined.
Note that these relative positions can be chosen independently from one another.
We call these relative positions crucial relative positions with respect to TC .

Since the crucial relative positions with respect to a C-tree TC are binary
variables, we can use (in)equalities between them to further constrain the em-
beddings represented by TC . We call a C-tree with such additional constraints
on its crucial relative positions a constrained cycle-tree (CC-tree) on the set of
cycles C. The CC-tree TC represents the embeddings represented by the underly-
ing C-tree whose crucial relative positions satisfy the additional constraints, i.e.,
there is a bijection between the represented embeddings and the solutions of the
2-Sat instance given by these constraints. We essentially prove two things. First,
for every connected graph G containing the cycles C there exists a CC-tree rep-
resenting exactly the embeddings of C that can be induced by embeddings of G.
Essentially, we have to restrict the extended PR-node and cutvertex constraints
to the crucial relative positions of a C-tree compatible with G. Second, for a
pair of CC-trees T 1

C and T 2
C on the same set of cycles there exists a CC-tree TC

representing exactly the embeddings on C that are represented by T 1
C and T 2

C .
Let G be a connected planar graph containing the disjoint cycles C. We say

that a C-tree TC on the cycles C is compatible with G if it is a minor of G. Note
that G may have many compatible C-trees, in the following we fix one of them
and call it the C-tree of G. The CC-tree TC compatible with G is the C-tree of G
together with the restriction of the extended PR-node and cutvertex constraints
to the crucial relative positions with respect to TC .

Theorem 4. Let G be a connected planar graph containing the disjoint cycles C.
The CC-tree TC of G represents exactly the embeddings of C that can be induced
by an embedding of G.

Sketch of proof. An embedding E of G induces an embedding EC of the cycles
C1, . . . , Ck. Since the C-tree TC is a minor of G, it represents EC . Moreover,
by Lemma 4, Ec satisfies the extended PR-node and cutvertex constraints. In
particular these constraints hold for all crucial relative positions, and hence EC is
represented by the CC-tree TC . The converse is not that simple. However, it can
be shown that if the extended PR-node and cutvertex constraints are satisfied
for all crucial relative positions, then they also hold for all relative positions.
Then an embedding can be constructed as in Lemma 4. ��
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Intersecting CC-Trees. Next, we consider two CC-trees T 1
C and T 2

C on the
same set of cycles C. We show that the set of embeddings that are represented by
both T 1

C and T 2
C can again be represented by a single CC-tree. We show this by

constructing a new CC-tree, which we call the intersection of T 1
C and T 2

C , show-
ing afterwards that this CC-tree has the desired property. The intersection TC
is a copy of T 1

C with some additional constraints given by the second CC-tree
T 2
C . We essentially have to formulate two types of constraints. First, constraints

stemming from the structure of the underlying C-tree of T 2
C . Second, the con-

straints given by the (in)equalities on the relative positions that are crucial with
respect to T 2

C . We show that both kinds of constraints can be formulated as
(in)equalities on the relative positions that are crucial with respect to T 1

C .
Let C1 and C2 be two cycles joined by an edge in T 2

C . Obviously, C1 and
C2 are contained in the boundary of a common face in every embedding E 2

represented by T 2
C . It is easy to formulate constraints on the relative positions

that are crucial with respect to T 1
C such that C1 and C2 also share a common

face in every embedding represented by T 1
C . Consider the path π from C1 to

C2 in T 1
C . For every three cycles C, C′ and C′′ appearing consecutively on π it

is necessary that posC′(C) = posC′(C′′) holds, otherwise C1 and C2 would be
separated by C′. Conversely, if this equation holds for every triple of consecutive
cycles on π, then C1 and C2 always lie on a common face. We call the resulting
equations the common-face constraints. Note that all relative positions involved
in such constraints are crucial with respect to T 1

C . Moreover, it can be shown that
the common-face constraints have size O(n). To see this, root T 1

C at an arbitrary
node. For a node C with parent C′ there are at most O(deg(C)) common-face
constraints involving posC(C

′). Hence the number of these constraints is O(n).
Any other common-face constraint at C is of the form posC(C1) = posC(C2),
where C1 and C2 are children of C. Each such constraint can be attributed to an
edge {C′

1, C
′
2} in T 2

C such that C is the lowest common ancestor of C′
1 and C′

2

in T 1
C . The claim follows since no edge in T 2

C is responsible for more than one
of these common-face constraints.

To formulate the constraints given on the crucial relative positions of T 2
C , we

essentially find, for each of these crucial relative positions posC1
(C2), a relative

position posC1
(C′

2) that is crucial with respect to T 1
C such that posC1

(C2) is
determined by fixing posC1

(C′
2) in T 1

C . More precisely, for every relative position
posC1

(C2) that is crucial with respect to T 2
C we define its representative in T 1

C
to be the crucial relative position posC1

(C′
2) where C′

2 is the first cycle in T 1
C on

the path from C1 to C2. We obtain the crucial-position constraints on the crucial
relative positions of T 1

C by replacing every relative position in the constraints
given for T 2

C by its representative. The resulting set of (in)equalities on the
crucial relative positions of T 1

C has size O(n) and is obviously necessary.
We can now formally define the intersection TC of two CC-trees T 1

C and T 2
C

to be T 1
C with the common-face and crucial-position constraints additionally re-

stricting its crucial relative positions. We obtain the following theorem, justifying
the name “intersection”.



Disconnectivity and Relative Positions in Simultaneous Embeddings 41

Theorem 5. The intersection of two CC-trees represents exactly the embeddings
that are represented by both CC-trees.

Sketch of proof. First observe that we only added necessary conditions for rep-
resentability in T 2

C to obtain TC . Hence TC represents all embeddings that are
represented by both T 1

C and T 2
C . For the converse let EC be an embedding repre-

sented by TC . Due to the construction of TC it is clear that EC is also represented
by T 1

C . For T 2
C first observe that the common-face constraints ensure that EC

adheres to the tree structure of T 2
C , and hence is represented by its underlying

C-tree. To show that the constraints on the crucial relative positions of T 2
C are

satisfied, we consider such an edge {C,C′} in T 2
C . We use induction over the

length of the path π from C to C′ in TC and exploit the crucial-position con-
straints of {C,C′} and the common-face constraints on π. ��
In the full version of this paper, we show that given a planar graph G and a
set of disjoint cycles C in C, a CC-tree of G can be computed in linear time.
Moreover, we show that the intersection of two CC-trees can be computed in
linear time as well. This immediately yields that Simultaneous Embedding
with Fixed Edges can be solved in O(n) time if the common graph consists
of a set of disjoint cycles. This result extends to k input graphs, all sharing the
same subgraph consisting of disjoint cycles.

Theorem 6. SEFE can be solved in O(n) time for k graphs G 1 , . . . , Gk , all
intersecting in the same common graph G consisting of disjoint cycles.

4 Connected Components with Fixed Embedding

In this section we consider the case where the common graph consists of arbitrary
connected components, each with a fixed planar embedding. Again it suffices to
care about the relative positions of connected components to one another. Now,
if C and C′ are two connected components in G, the relative position posC(C

′)
of C′ with respect to C is a face of C.

We extend the constrained cycle-tree to a constrained component-tree (called
CC⊕-tree) representing all planar embeddings of G that can be induced by an
embedding of G 1 . As before, each incidence in the CC⊕-tree represents the
decision for a crucial relative position. Moreover, there is a set of inequalities and
equations between these choices. As before, CC⊕-trees can be intersected, again
yielding a CC⊕-tree. To obtain a simultaneous embedding we need to choose
relative positions according to the constraints in the CC⊕-trees. However, since
these decisions are not binary anymore, the inequalities yield a coloring problem
in the conflict graph, which is NP-hard in general. Due to the special structure
of the extended PR-node and cutvertex constraints, inequalities only occur for
crucial relative positions that are restricted to at most two values, which again
yields a binary choice. We show that the CC⊕-tree can be computed in O(n2)
time, and that two such trees can be intersected in O(n2) time.

Theorem 7. SEFE can be solved in O(n2) time if the embedding of each con-
nected component of the common graph is fixed.
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5 Conclusion

Contrasting previous work on the SEFE problem, which makes strong connec-
tivity assumptions on the input graphs, and focus on orderings of edges around
vertices, we considered disconnected instances and focused on consistent relative
positions. We reduced the general case to instances where the input graphs are
connected and gave efficient algorithms for the case where the edge orderings of
the common graph are fixed; in particular a linear-time algorithm for instances
whose common graph is a set of disjoint cycles. The solutions are based on a com-
pact and easy-to-handle data structure, the CC-tree and CC⊕-tree, representing
all simultaneous embeddings.
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