
A Semantic Wiki Approach to Cultural Heritage Data Management

René Witte, Thomas Gitzinger, Thomas Kappler, Ralf Krestel

Institut für Programmstrukturen und Datenorganisation (IPD)
Universität Karlsruhe (TH), Germany

Abstract
Providing access to cultural heritage data beyond book digitization and information retrieval projects is important for delivering advanced
semantic support to end users, in order to address their specific needs. We introduce a separation of concerns for heritage data
management by explicitly defining different user groups and analyzing their particular requirements. Based on this analysis, we developed
a comprehensive system architecture for accessing, annotating, and querying textual historic data. Novel features are the deployment of a
Wiki user interface, natural language processing services for end users, metadata generation in OWL ontology format, SPARQL queries on
textual data, and the integration of external clients through Web Services. We illustrate these ideas with the management of a historic
encyclopedia of architecture.

1. Introduction
The amount of publicly available knowledge increases faster
than we can imagine—hence the term “Information Ex-
plosion” used by several authors (Lyman and Varian, 2003;
Sweeney, 2001). With the barrage of newly created content—
news, blogs, web pages, research papers—existing, “analog”
documents and their users often receive less attention than
the quality of the content deserves.
In this paper, we present the results from a project aimed at
developing enhanced semantic support for users of textual
cultural heritage data. A particular feature of our approach is
the integration of different concerns into a single, cohesive
system architecture that addresses requirements from end
users, software engineering aspects, and knowledge discov-
ery paradigms. The ideas were implemented and tested with
a historic encyclopedia of architecture and a number of dif-
ferent user groups, including building historians, architects,
and NLP system developers.

2. User Groups and Requirements
Nowadays, the baseline for cultural heritage data man-
agement of book-type publications is the production of
a scanned (digitized) version that can be viewed and dis-
tributed online, typically with some kind of Web interface.
Before we can deliver more advanced access methods, we
have to be more precise about the targeted end users. Who
needs access to heritage data, and for what purpose?

2.1. User Groups
Within our project, we had to consider the requirements from
four different user groups; each of them having a different
background and expectations concerning the management
of historic textual data.

(1) Historians: Within this group, we target users that deal
with historic material from a scientific motivation, namely,
historians. They require an electronic presentation that pro-
vides for a direct mapping to the printed original, e.g., for ci-
tation purposes. Additionally, semantic analysis tools should
support their work through the formulation and verification
of hypotheses.

(2) Practitioners: Under this group, we are concerned
with users that need access to the historic material for their

contemporary work. In our example scenario, the hand-
book on architecture, these are today’s architects that need
information on the building processes and materials used,
e.g., within a restoration project of an old building. Here,
the historic material contains knowledge that is not readily
accessible in modern sources. Another example for such a
user group are musicians dealing with old music scores and
their descriptions, or lexicographers analyzing documents
for the development of dictionary entries.
(3) Laypersons: Historic materials are a fascinating
source of knowledge, as they preserve information over
centuries. Providing widespread online access to materials
that are otherwise only available in a controlled environment
to scientists due to their fragile nature is perhaps one of the
greatest benefits of digitization projects.
(4) Computational Linguists: Similarly to practitioners,
linguists are often interested in historic documents from a
functional point of view. However, their domain focuses
on the properties of the language and its development over
time rather than the underlying domain of discourse. They
also have particular requirements for corpus construction,
access, and annotation to support automated NLP analysis
workflows.

2.2. Detected Requirements
We can now derive a number of requirements a system needs
to fulfill, based on the user groups defined above:
Web Interface. To make the historic data available over
the Internet, and to provide easy access within a familiar
metaphor, the system needs to support a Web interface. This
concerns all user groups to various degrees, but in particular
the historians and laypersons.
Annotation Support. Users working with the historic
data from a scientific point of view—in particular group
(1)—often need to comment, add, and collaborate on the
historic data. This should be supported within the same
interface as the primary (historic) data, to avoid unnecessary
context and application switches for the end users. At the
same time, these annotations must be maintained by the
architecture on clearly separated layers, to keep the integrity
of the historic data intact.
Corpus Generation. While a Web interface is helpful for
a human user, automated analyses using NLP tools and

frameworks (user group (4)) can be better supported with
a corpus in a standard (XML-based) markup, since HTML
pages generated through Web frameworks typically mix con-
tent and layout information (menus, navigation bars, etc.).
Thus, the architecture should provide a separate corpus that
is automatically derived from the historic data and contains
appropriate markup (for headlines, footnotes, figure cap-
tions, etc.). Ideally, it should allow to cross-link entities
with the Web interface.

NLP Services. For large collections of (historic) docu-
ments, manual inspection of all content or even a subset
obtained through information retrieval (IR) is not feasible.
Here, NLP analyses can deliver additional benefit to end
users, in particular groups (1)–(3), by integrating NLP anal-
ysis services (and their results) into the overall architecture.
It should allow the execution of any service, developed by
user group (4), and also deliver the results back to the clients.
Examples for such NLP services are summarization, index
generation, or named entity detection.

Metadata Generation. While NLP results can be useful
for a human user, we also need to support further automated
analysis workflows. User group (2) in particular requires
access to the historic data, as well as its metadata, from
external tools and applications relevant for their domain. To
support external access to metadata from many different
clients, the architecture should be capable of generating
standards-compliant data formats, such as RDF and OWL.

Application Integration. As pointed out in the last re-
quirement, external applications should be provided with
automated access to the historic data and its metadata. Gen-
erally speaking, this requires the introduction of a client/ser-
ver model, where the communication, like the metadata
format, should use open, established standards.

3. Related Work
Before we describe our approach in detail, we discuss related
work relevant for the detected requirements.
The Cultural Heritage Language Technologies (CHLT)
project (Rydberg-Cox, 2002; Rydberg-Cox, 2005) describes
the use of NLP methods to help students and scholars to
work with classic Greek and Latin corpora. Similar to our
approach, collaboration is an important goal of the project.
Not only for sharing metadata about the text itself, but also
to offer users the possibility to annotate, comment, or cor-
rect the results of automated analysis. This metadata can
also contain hyperlinks to connect related texts with each
other. The importance of correct morphological analysis is
stressed as a baseline technology for users in the humanities,
a statement which is also reflected in our work by integrating
a self-learning lemmatizer for the German language (Perera
and Witte, 2005) for accurate index generation. Further pro-
cessing in the CHLT project includes information retrieval
and data visualization. Identifying keywords, clustering sub-
sets of the data, and visualizing the resulting groups supports
the users in grasping concepts or performing search. In con-
trast, our approach uses open, standardized data formats like
an automatically populated ontology to facilitate searching
and browsing through the corpus and a Wiki system to share
information between users.

As outlined in (Mavrikas et al., 2004), access to cultural
heritage data available in natural language can be facilitated
using various NLP techniques. In the context of the Se-
mantic Web, the proposed system extracts CH data from
different sources in the Internet and processes the data af-
terwards. An ontology (Doerr, 2003) is used to organize
the mined data. Templates are used to extract relevant in-
formation, and the use of multi-document summarization
is also proposed, as a way to present relevant information
in a condensed way to the user. Here, we present an actual
implementation of a system addressing these problems and
extend the use of ontologies to allow easy browsing and
querying of the document content for different user groups.
Another approach based on the CIDOC-CRM1 ontology is
presented in (Généreux, 2007). The system described there
consists of two parts, one for extracting CH knowledge
from natural language texts and saving the information in
the ontology format, and one for using natural language to
query the database. The natural language is reformatted to a
SPARQL query using WordNet. This approach, in contrast
to our system, stresses more the search aspect to find relevant
data and offers no further possibilities for collaboration or
processing of the data.
In (Sinclair et al., 2005), a system is presented that enables
the user to explore, navigate, link, and annotate digitized
cultural heritage artifacts like videos, photos, or documents.
The system also supports user-generated descriptions and
content. The focus in this project lies on the integration of
the different metadata formats of the source content, whereas
we additionally focus on the processing and collaboration
part.
From a technical perspective, semantic extensions to Wiki
systems based on Semantic Web technologies like OWL on-
tologies and RDF are similar in that they provide the means
for content structuring beyond the syntactical level. In these
systems, the properties of and relations between objects can
be made explicit, with the Wiki system “knowing” about
them. This allows for automated processing of Wiki content,
e.g., through software agents. Current implementations of
these ideas can be found in systems like Semantic Medi-
aWiki (SMW) (Krötzsch et al., 2006) or IkeWiki (Schaffert,
2006). It is important to note that these tools are different
from and complementary to our approach: While in our
context, the content of a Wiki is subject to semantic analysis
via NLP methods (with the Wiki engine itself not needing
to have semantic capabilities), semantic Wikis like SMW
have explicit notational and internal semantic capabilities.
Using a semantic Wiki in our system in the future would
allow the Wiki engine itself direct access to the facts derived
from semantic text analysis.

4. Semantic Heritage Data Management
In this section, we present our approach to cultural heritage
data management, which integrates a number of different
technologies in order to satisfy the requirements of the vari-
ous user groups: (i) A Wiki user interface, (ii) text mining
support using an NLP framework, (iii) Semantic Web on-
tologies based on OWL and RDF for metadata management,

1CIDOC Conceptual Reference Model, http://cidoc.ics.forth.gr/

http://cidoc.ics.forth.gr/

W
riter

O
penO

ffice.org

P
lugin

W
eb

C
lient

Tier 1: Clients Tier 4: ResourcesTier 2: Presentation and Interaction Tier 3: Analysis and Retrieval

C
lient S

ide A
bstraction Layer

C
lient

D
esktop

NLP Subsystem

NLP Service Connector

W
eb S

erver

Wiki Engine

Service Invocation

Service Information

Language Services

NLP/Wiki Connector

Question Answering

Index Generation

Information Retrieval

Information Extraction

Automatic Summarization

Language

Service

Descriptions

Documents

Document

Metadata

Figure 1: System architecture overview

and (iv) W3C Web Services for application integration. We
first present an overview of our system in the next subsec-
tion. The various subsystems are illustrated using examples
from a productive, freely accessible2 Web resource built
around the German Handbuch der Architektur (handbook
on architecture) from the 19th century, described in detail
in Section 4.2. The digitization process is described in Sec-
tion 4.3. Necessary format conversions for the digital ver-
sion are covered in Section 4.4. To support our user groups,
we integrated several NLP analysis services, which are cov-
ered in Section 4.5. Finally, our semantic extensions for
generating OWL/RDF metadata and application integration
are covered in Section 4.6.

4.1. Architectural Overview
As stated above, our goal is the development of a unified ar-
chitecture that fulfills the requirements (Section 2.2.) of the
different user groups defined in Section 2.1., by integrating
means for content access, analysis, and annotation.
One of the central pieces of our architecture is the introduc-
tion of a Wiki system (Leuf and Cunningham, 2001). Wiki
systems provide the Web interface stipulated in our first
requirement, while also allowing users to add meta-content
in form of separate discussion or annotation pages. This
capability directly addresses our second requirement, by
allowing users to discuss and collaborate on heritage data,
using an online tool and a single interface, while keeping
the original data intact.3

Other clients, NLP services, and the actual content have to
be integrated into this model. Figure 1 shows how these and
the remaining components are systematically assembled to
form the overall architecture of our system.
The architecture comprises four tiers. Tier 1 consists of
clients that the users employ to access the system. Plug-in
capable existing clients, like the OpenOffice.org application
suite, can also be extended to be integrated with our archi-
tecture. New applications can have that functionality built
in, like the “Desktop Client” depicted in the diagram. The

2See http://durm.semanticsoftware.info
3Assuming the Wiki has been properly configured for this sce-

nario; the technical details depend on the concrete Wiki system.

“Client-Side Abstraction Layer” (CSAL) facilitates connect-
ing clients by providing common communication and data
converting functionality.
The clients communicate with a Web server on Tier 2, be-
hind which we find the Wiki engine and a software module
labeled “NLP Service Connector.” The functionality of this
module is offered as an XML Web service, as standardized
by the W3C.4 This means that there is a publicly accessible
interface definition, written in the Web Service Description
Language (WSDL), from which clients know how to use
the offered functionality. The functionality itself is used
through a Web service endpoint, to which the client sends
and from where it receives messages. The main task of
the NLP Service Connector is to receive input documents
and have the NLP subsystem (Tier 3) perform various text
analysis procedures on them. A sub-module of the NLP
Service Connector, labeled “NLP/Wiki Connector,” allows
for the automatic retrieval, creation, and modification of
Wiki content.
Finally, on Tier 4, we have metadata on the employed text
analysis services (top), which the NLP Service Connector
requires in order to operate these services. The bottom
rectangle contains the documents maintained by the Wiki
system as well as their metadata, which might have been
provided by hand, or generated through automatic analysis
methods.

4.2. Source Material
We implemented and evaluated the ideas described here for a
particular set of historic documents: the German Handbuch
der Architektur, a comprehensive multi-volume encyclo-
pedia of architecture.5 The full encyclopedia was written
between the late 19th and early 20th century; It aimed to
include all architectural knowledge at the time, both past
and present, within the fields of architectural history, ar-
chitectural styles, construction, statics, building equipment,
physics, design, building conception, and town planning.
The full encyclopedia comprises more than 140 individual

4Web Services Architecture, http://www.w3.org/TR/ws-arch/
5Edited by Joseph Durm (b14.2.1837 Karlsruhe, Germany,

d3.4.1919 ibidem) and three other architects since 1881.

http://durm.semanticsoftware.info
http://www.w3.org/TR/ws-arch/

Figure 2: Source material examples: Scanned pages from Handbuch der Architektur (1900)

publications and contains at least 25 000 pages.
Due to the ambitious scope, the long publication process,
and the limitations of the technologies available at that time,
it is extremely difficult to gain an overview of a single topic.
Information is typically distributed over several parts con-
taining a number of volumes, which in turn are split into
books. Most of these do not contain any kind of index. In
addition, some of the volumes were edited and reprinted and
a supplement part was added.
Due to funding limitations, we only dealt with a single
volume6 within the project described in this paper. However,
the concepts and technologies have been developed with the
complete dataset in mind.

4.3. Digitization and Error Correction
The source material is first digitized using specialized book
scanners, producing a TIFF file for each physical page; in
our case, with a grayscale resolution of 600dpi.
In a second step, the image files need to be converted to
machine-readable text to support, amongst others, NLP anal-
ysis and metadata generation. We initially planned to au-
tomate this process using OCR software. However, due to
the complex layout of the original material (see Figure 2),
which contains an abundance of figures, graphs, photos, ta-
bles, diagrams, formulas, sketches, footnotes, margin notes,
and mixed font sizes, as well as the varying quality of the
100-year old source material, this proved to be too unreliable.
As the focus of this project was on developing enhanced
semantic support for end users, not basic OCR research,
we decided to manually convert the source material into an
electronic document. This provided for not only a faster
and more reliable conversion, but also accurately captured
layout formation in explicit markup, such as footnotes, chap-
ter titles, figure captions, and margin notes. This task was
outsourced to a Chinese company for cost reasons; Man-
ual conversion was performed twice to allow an automatic
cross-check for error detection. The final, merged version
contained only a very small amount of errors, which were
eventually hand-corrected during the project.

4.4. Format Transformation and Wiki Upload
The digitized content was delivered in the TUSTEP7 format.
This content was first converted to XML, and finally to Wiki

6E. Marx: Wände und Wandöffnungen (Walls and Wall Open-
ings). In “Handbuch der Architektur,” Part III, Volume 2, Number I,
Second edition, Stuttgart, Germany, 1900. Contains 506 pages with
956 figures.

7TUebingen System of TExt processing Programs (TUSTEP),
http://www.zdv.uni-tuebingen.de/tustep/tustep eng.html

markup.

4.4.1. TUSTEP Format
TUSTEP is a toolkit for the “scientific work with textual
data” (Uni, 2008), consisting of a document markup stan-
dard along with tools for text processing operations on
TUSTEP documents. The markup is completely focused on
layout, so that the visual structure of printed documents can
be captured well. Structurally, it consists both of XML-like
elements with an opening and closing tag, such as <Z> and
</Z> for centered passages; and elements serving as control
statements, such as #H: for starting text in superscript. The
control statements remain in effect until another markup
element cancels them out, such as #G: for adjusting the
following text on the baseline.
TUSTEP predates XML, and while it is still in use at many
universities, we found it makes automatic processing dif-
ficult. The control statements, for instance, make it hard
to determine the range of text they affect, because their
effect can be canceled by different elements. In addition,
in the manual digitization process, markup was applied in-
consistently. Therefore, we chose to first convert the data
to a custom XML format, designed to closely match the
given TUSTEP markup. This also enabled easier structural
analysis and transformation of the text due to the uniform
tree structure of XML and the availability of high-quality
libraries for XML processing.

4.4.2. Custom XML
We developed a custom tool to transform TUSTEP data into
XML. The generated XML data intends to be as semantically
close to the original markup as possible; as such, it contains
mostly layout information such as line and page breaks and
font changes. Except for the exact placement of figures
and tables, all such information from the original book is
retained.
Parsing the XML into a DOM8 representation provides for
easy and flexible data transformation. The resulting XML
format can be directly used for NLP corpus generation.

4.4.3. Wiki Markup
To make the historic data accessible via a Wiki, we have to
further transform it into the data format used by a concrete
Wiki engine. Since we were dealing with an encyclopedic
original, we chose the MediaWiki9 system, which is best
known for its use within the Wikipedia10 projects.

8Document Object Model (DOM), http://www.w3.org/DOM/
9MediaWiki, http://en.wikipedia.org/wiki/MediaWiki

10Wikipedia, http://www.wikipedia.org

http://www.zdv.uni-tuebingen.de/tustep/tustep_eng.html
http://www.w3.org/DOM/
http://en.wikipedia.org/wiki/MediaWiki
http://www.wikipedia.org

A challenging question was how to perform the concrete
conversion from content presented in physical book layout
to Wiki pages. Obviously, translating a single book page
does not translate well into a single web page. We first
attempted to translate each book chapter into a single page
(with its topic as the Wiki entry). However, with only 15
chapters in a 500-page book, the resulting Web pages were
too long to be used comfortably in the MediaWiki interface.
Together with our end users, we finally decided to convert
each sub-chapter (section) into a single Wiki page, with
additional internal structuring derived from the margin notes
preserved by the manual conversion.
MediaWiki uses the markup language Wikitext, which was
designed as a “simplified alternative to HTML,”11 and as
such offers both semantic markup, like headings with differ-
ent levels, as well as visual markup, like italic or bold text.
Its expressiveness is largely equal to that of HTML, despite
the simplified approach, because it lets users insert HTML
if Wikitext does not suffice.

Example: Footnote conversion. Footnotes were deliv-
ered in TUSTEP in the form #H:n#G:) for each footnote
n. The markup indicates text being set to superscript (#H:),
then back to the standard baseline (#G:). The footnote
reference in the text and the anchor in the footnote section
of a page have the same markup, as they look the same. The
tool converting to XML locates footnotes using a regular
expression, and creates <footnote to="n" /> resp.
<footnote from="n">...</footnote> tags. Finally,
the conversion to Wikitext transforms the references to
^{[[#fn8|8)]]}.
The HTML sup tag sets the text as superscript, and its con-
tent is a link to the anchor “fn8” on the same page, with the
link text simply being “8”. The footnote itself is represented
by ’’8)’’ ... [[#fn8ref|ˆ]].
We see the anchor linked to from the reference, and vice
versa a link to jump back upwards to the reference.

4.4.4. Wiki Interface Features.
The conversion to Wikitext inserts further information for
the Wiki users, such as links to scans of the original pages,
and link/anchor combinations to emulate the page-based
navigation of the book (see Figure 3). For instance, the
beginning of page 211, which is indicated in TUSTEP by
@@1@<S211><, looks as follows in the resulting Wikitext:

’’’Seite 211 ([[Media:S211_large.gif|Scan]])’’’
[[Image:S211_large.gif|thumb|200px|Scan der

Originalseite 211]]

4.5. NLP Integration
One of the main goals of our work is to support the end
users—groups (1) to (3)—with semantic analysis tools based
on NLP. To make our architecture independent from the
application domain (architecture, biology, music, . . .) and
their custom NLP analysis pipelines, we developed a general
integration framework that allows us to deploy any kind of
language service. The management, parametrization, and
execution of these NLP services is handled in our framework

11Wikitext, http://en.wikipedia.org/wiki/Wikitext

Figure 3: The Wiki interface integrating digitized text,
scanned originals, and separate “Discussion” pages

(see Figure 1, Tier 3, “NLP Subsystem”) by GATE, the
General Architecture for Text Engineering (Cunningham et
al., 2002). To allow a dynamic discovery of newly deployed
language services, we added service descriptions written in
OWL to our architecture (see Section 4.1.).
Language services should help the users to find, understand,
relate, share, and analyze the stored historic documents. In
the following subsections, we describe some of the services
we deployed in our implementation to support users of the
historic encyclopedia, including index generation, automatic
summarization, and OWL metadata generation.

4.5.1. Index Generation
Many documents—like the discussed architectural
encyclopedia—do not come with a classical back-of-the-
book index. Of course, in the absence of an index, full-text
search can help to locate the various occurrences of a
single term, but only if the user already knows what he is
looking for. An index listing all nouns with their modifiers
(adjectives), with links to their locations of occurrence, can
help the user find useful information he was not expecting,
which is especially important for historical documents,
which often contain terminology no longer in use.
For our index, we process all noun phrases found in the ana-
lyzed texts. For each noun phrase, we compute the lemma of
the head noun and keep track of its modifiers, page number,
and corresponding Wiki page. To deal with the problem of
correctly lemmatizing historic terminology no longer in use,
we developed a self-learning lemmatizer for German (Per-
era and Witte, 2005). Nouns that have the same lemma are
merged together with all their information. Then, we create
an inverted index with the lemma as the main column and
their modifiers as sub-indexes, as shown in Figure 4. The
generated index is then uploaded from the NLP subsystem
into the Wiki through a connector (“NLP/Wiki Connector”
in Figure 1).

4.5.2. Automatic Summarization
Large text corpora make it impossible for single users to
deal with the whole documents in total. The sheer amount
of information encoded in natural language in huge text
collections poses a non-trivial challenge to information sys-

http://en.wikipedia.org/wiki/Wikitext

Figure 4: NLP-generated full text index, integrated into the
Wiki interface (page numbers are hyperlinks to Wiki pages)

tems in order to adequately support the user. To find certain
information, to get an overview of a document, or just to
browse a text collection, automatic summarization (Mani,
2001) offers various methods of condensing texts.12

Short, headline-like summaries (around 10 words) that in-
corporate the most important concepts of a document or a
Wiki page facilitate the search for particular information
by giving a user an overview of the content at a glance. In
addition, full-text summaries can be created for each page,
e.g., with a length of 100 words or more. These summaries
in free-text form can be read much more quickly than a
full-length article, thereby helping a user to decide which
Wiki pages he wants to read in full.
More advanced types of summaries can support users during
both content creation and analysis. Multi-document sum-
maries can combine knowledge from several pages within a
Wiki or even across Wiki systems. Update summaries keep
track of a user’s reading history and only present information
he has not read before, thereby further reducing the problem
of information overload. And focused summaries enable the
user to formulate a query (natural language questions) the
generated summary focuses on. This is especially useful to
get a first impression of the available information about a
certain topic in a collection. In (Witte et al., 2005), we illus-
trate the usefulness of focused summaries for a particular
architectural scenario.

4.5.3. Other NLP Services
The examples presented so far are by no means exhaustive.
Depending on the type of data under investigation and the de-
mands of the users concerned with their analysis (groups (1)
and (2)), additional NLP services will need to be introduced.
Due to our service-oriented approach (cf. Section 4.1.), new
services can be added at any time, as they are automatically
detected by all connected clients through the metadata repos-
itory, without any changes on the client side. Likewise, new
user clients can be added dynamically to the architecture,
without requiring any changes to the NLP server.

4.6. Semantic Extensions
The NLP analysis services introduced so far are aimed at
supporting the user groups (1) and (3): Summaries, full-text

12See, e.g., the Document Understanding Conference (DUC),
http://duc.nist.gov

Figure 5: An ontology instance created through NLP

indices, and question-answering all produce new natural
language texts, which are convenient for humans. But they
are less useful for providing further automated access to
the historic data, e.g., through desktop tools targeted at user
group (2). In our example scenario, the architects need to in-
tegrate the historic knowledge “stored” in the encyclopedia
within contemporary architectural design tools: While view-
ing a certain construction element, the relevant content from
the handbook should be extracted and presented alongside
other project information. This requires the generation of
metadata in a machine-processable data format. In our archi-
tecture, this is provided through the NLP-driven population
of formal ontologies. We discuss our ontology model in the
next subsection, followed by a description of the automatic
population process and the querying of the result format.

4.6.1. Ontology Model
Our NLP-generated metadata is formally represented using
the Web Ontology Language (OWL),13 which is a standard
defined by the World Wide Web Consortium (W3C). Specif-
ically, we use the sub-format OWL-DL, which is based on
description logics (DL). OWL is also the foundation of the
Semantic Web initiative, which allows us to immediately
make use of a large variety of tools and resources developed
for OWL-based information processing (editors, storage sys-
tems, query languages, reasoners, visualization tools, etc.).
Our ontology has two parts: a document ontology describing
the domain of NLP (documents, sentences, NPs, coreference
chains, etc.) and a domain ontology. While the document
ontology is independent of the content in the historic docu-
ments, the domain ontology has to be developed specifically
for their discourse domain. In our example, this ontology
needs to contain architectural concepts, such as doors, walls,
or windows. By combining both ontologies, we can run
semantic queries against the ontology, e.g., asking for all
sentences where a certain concept appears. The incorpora-
tion of CIDOC/CRM could extend our model in the future.

Document Ontology Model. Our document ontology
models a number of concepts relevant for the domain of

13OWL, http://www.w3.org/2004/OWL/

http://duc.nist.gov
http://www.w3.org/2004/OWL/

NLP. One of the main concepts is document, representing
an individual text processed by an NLP pipeline, containing:
the title of the document; its source address (typically a
URL or URI); and a relation containsSentence between a
document and all its sentences.
Likewise, sentences are also represented by an ontology
class, with: the start and end position (beginLocation, end-
Location) within the document, given as character offset;
the sentence’s content, stored as plain text, i.e., without ad-
ditional markup; and a relation contains between a sentence
and all named entities that have been detected in it.
Each of the named entities has, in addition to its ontol-
ogy class, a number of additional properties: a unique id
(idPropOf) generated for this instance; the page number
(originalPageNumber), where the instance can be found in
the (printed) source; and the full URL (pageURL) for direct
access to the instance in the Wiki system.
Additionally, we can represent the result of the corefer-
ence resolution algorithm using the OWL language feature
sameAs: If two instances appear in the same coreference
chain, two separate ontology instances are created (contain-
ing different ids and possibly different page/URL numbers),
but both instances are included in such a sameAs relation.
This allows ontology reasoners to interpret the syntactically
different instances as semantically equivalent. Additionally,
a relation corefStringWithId is created for every entity in the
coreference chain, refering to its unique id stored in the id-
PropOf property; and the content of the sentence containing
the co-refering entity is stored in corefSentenceWithId.

Domain Ontology Model. In addition to the generic NLP
ontology, a domain-specific ontology can be plugged into
the system to allow further structuring of the NLP results. If
such an ontology is developed, it can also be used to further
facilitate named entity detection as described below.
In our approach, we rely on a hand-constructed ontology of
the domain. This could be enhanced with (semi-)automatic
ontology enrichment or ontology learning. In general, the
design of the domain ontology needs to take the require-
ments of the downstream applications using the populated
ontology into account.

4.6.2. Automatic Ontology Population
We developed an ontology population NLP pipeline to auto-
matically create OWL instances (individuals, see Figure 5)
for the ontology described above. An overview of the work-
flow is shown in Figure 6.
The pipeline runs on the XML-based corpus described in
Section 4.4. After a number of standard preprocessing steps,
including tokenization, POS tagging, and NP chunking,
named entities (NEs) are detected using a two-step pro-
cess. First, an OntoGazetteer (Bontcheva et al., 2004) labels
each token in the text with all ontology classes it can belong
to. And secondly, ontology-aware grammar rules written in
the JAPE14 language are used to find named entities (NEs).
Evaluation of the correctness of the generated instances can
be conducted using precision and recall measures (Maynard
et al., 2006).

14Java Annotations Pattern Engine, a regular expression-based
language for writing grammars over document annotation graphs.

Tokenisation, Sentence Splitting, ...

NLP Preprocessing:

Part−of−Speech Tagging

Noun Phrase Chunking

Lemmatisation

Ontology Classes to Tokens

Coreference Resolution

OWL Ontology Export

Named Entity Detection

Grammars for

Onto−Gazetteer: Assign Assign Ontology

Classes to Tokens

Ontology

Populated

Ontology

Population

Ontology−Aware
Grammar Rules

Ontology

Combined

Domain

Ontology

Document

Ontology

Figure 6: NLP pipeline for ontology population

Finally, the created instances are exported into the result
ontology, combining a number of domain and document fea-
tures. An example instance, of the ontology class Kalkmörtel
(lime mortar), is shown in Figure 5.

4.6.3. Ontology Queries
The automatically populated ontology represents a machine-
readable metadata format that can be queried through a
number of standardized ontology query languages, such as
SPARQL.15 Queries are a much more expressive paradigm
for analyzing text mining results than simple IR; in particu-
lar, if a domain model is available, they allow queries over
the analyzed documents on a semantic level.
An example SPARQL query is shown in Figure 7. The
query shown in the left box represents the question “Which
building materials are mentioned in the handbook together
with the concept ‘Mauer’ (wall), and on which page?” The
result of this query (executed using Protégé16), is shown
on the right. The first column (“type”) shows what kind
of entity (stone, plaster, concrete, . . .) was found, i.e., a
sub-class of “material” in the domain ontology. The results
can now be directly inspected by the user or used for further
automatic processing by another application.
More abstractly speaking, ontology queries support auto-
mated problem-solving using a knowledge base. A user of
our system, like a historian, might want to formulate hy-
potheses concerning the source material. Translated into an
OWL query, the result can be used to confirm or refute the
hypothesis. And as a standardized NLP result format, it also
facilitates direct integration into an end-user application or
a larger automated knowledge discovery workflow.

4.6.4. Application Integration
The populated ontology also serves as the basis for our final
requirement, application integration. With “application” we

15SPARQL, http://www.w3.org/TR/rdf-sparql-query/
16Protégé, http://protege.stanford.edu/

http://www.w3.org/TR/rdf-sparql-query/
http://protege.stanford.edu/

Figure 7: Posing a question to the historic knowledge base through a SPARQL query against the NLP-populated ontology

mean any end-user accessible system that wants to integrate
the historic data within a different context. For example, in
a museum setting, such an application might allow a visitor
to access content directly relevant to an artifact. A lexi-
cographer might want to query, navigate, and read content
from historical documents while developing a lexical entry.
And in our application example, an architect needs access
to the knowledge stored in the handbook while planning a
particular building restoration task. Here, construction ele-
ments displayed in a design tool (such as window or window
sill) can be directly connected with the ontological entities
contained in the NLP-populated knowledge. This allows
an architect to view relevant content down to the level of
an individual construction element using the named entities,
while retaining the option to visit the full text through the
provided Wiki link.

5. Summary and Conclusions
To support users in the cultural heritage domain, a precise
analysis of the different user groups and their particular re-
quirements is essential. In this paper, we present a holistic
approach based on a unified system architecture that high-
lights the many inter-dependencies in supporting different
groups with particular features, aimed at different use cases:
Historians have the support of NLP analysis tools and a
user-friendly Web-based access and collaboration tool build
around a standard Wiki system. Laypersons also benefit
from these user-friendly features, while practitioners—in
our scenario building architects—can additionally use NLP-
generated ontology metadata for direct application integra-
tion. Finally, our approach also supports computational
linguists through corpus construction and querying tools.
The experience from the implemented system using the
example of a historical encyclopedia of architecture demon-
strates the usefulness of these ideas. Finally, providing a
machine-readable knowledge base that integrates textual in-
stances and domain-specific entities is consistent with the
vision of the Semantic Web, which has the potential to fur-
ther enhance knowledge discovery for cultural heritage data.

6. References
Kalina Bontcheva, Valentin Tablan, Diana Maynard, and Hamish

Cunningham. 2004. Evolving GATE to Meet New Challenges
in Language Engineering. Natural Language Engineering.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. 2002.
GATE: A framework and graphical development environment
for robust NLP tools and applications. In Proc. of the 40th
Anniversary Meeting of the ACL. http://gate.ac.uk.

Martin Doerr. 2003. The CIDOC Conceptual Reference Mod-
ule: An Ontological Approach to Semantic Interoperability of
Metadata. AI Mag., 24(3):75–92.

Michel Généreux. 2007. Cultural Heritage Digital Resources:
From Extraction to Querying. In Proceedings of the Workshop
on Language Technology for Cultural Heritage Data (LaTeCH
2007), pages 41–48, Prague, Czech Republic, June. ACL.

Markus Krötzsch, Denny Vrandečić, and Max Völkel. 2006. Se-
mantic MediaWiki. In Isabel Cruz, Stefan Decker, Dean Alle-
mang, Chris Preist, Daniel Schwabe, Peter Mika, Mike Uschold,
and Lora Aroyo, editors, The Semantic Web – ISWC 2006, vol-
ume 4273 of LNCS, pages 935–942. Springer.

Bo Leuf and Ward Cunningham. 2001. The Wiki Way, Quick
Collaboration on the Web. Addison-Wesley.

Peter Lyman and Hal R. Varian. 2003. How Much Information?
I. Mani. 2001. Automatic Summarization. John Benjamins B.V.
Efthimios C. Mavrikas, Nicolas Nicoloyannis, and Evangelia

Kavakli. 2004. Cultural Heritage Information on the Seman-
tic Web. In Enrico Motta, Nigel Shadbolt, Arthur Stutt, and
Nicholas Gibbins, editors, EKAW, volume 3257 of Lecture Notes
in Computer Science, pages 477–478. Springer.

D. Maynard, W. Peters, and Y. Li. 2006. Metrics for Evaluation of
Ontology-based Information Extraction. In Proceedings of the
4th International Workshop on Evaluation of Ontologies on the
Web (EON 2006), Edingburgh, UK, May.

Praharshana Perera and René Witte. 2005. A Self-Learning
Context-Aware Lemmatizer for German. In Proc. of Human
Language Technology Conference and Conference on Empirical
Methods in Natural Language Processing (HLT/EMNLP 2005),
pages 636–643, Vancouver, BC, Canada, October 6–8.

Jeffrey A. Rydberg-Cox. 2002. Cultural Heritage Language Tech-
nologies: Building an Infrastructure for Collaborative Digital
Libraries in the Humanities. Ariadne, 34, December.

Jeffrey A. Rydberg-Cox. 2005. The Cultural Heritage Language
Technologies Consortium. D-Lib Magazine, 11(5), May.

Sebastian Schaffert. 2006. IkeWiki: A Semantic Wiki for Collabo-
rative Knowledge Management. In WETICE, pages 388–396.

Patrick Sinclair, Paul Lewis, Kirk Martinez, Matthew Addis,
Adrian Pillinger, and Daniel Prideaux. 2005. eCHASE: Ex-
ploiting Cultural Heritage using the Semantic Web. In 4th In-
ternational Semantic Web Conference (ISWC 2005), Galway,
Ireland, November 6–10.

L. Sweeney. 2001. Information Explosion. In L. Zayatz, P. Doyle,
J Theeuwes, and J. Lane, editors, Confidentiality, Disclosure,
and Data Access: Theory and Practical Applications for Statis-
tical Agencies. Urban Institute, Washington, DC.

Universität Tübingen – Zentrum für Datenverarbeitung, 2008.
TUSTEP: Handbuch und Referenz. Version 2008.

René Witte, Petra Gerlach, Markus Joachim, Thomas Kappler, Ralf
Krestel, and Praharshana Perera. 2005. Engineering a Semantic
Desktop for Building Historians and Architects. In Proc. of the
Semantic Desktop Workshop at the ISWC 2005, volume 175 of
CEUR, pages 138–152, Galway, Ireland, November 6.

http://gate.ac.uk

	Introduction
	User Groups and Requirements
	User Groups
	Detected Requirements

	Related Work
	Semantic Heritage Data Management
	Architectural Overview
	Source Material
	Digitization and Error Correction
	Format Transformation and Wiki Upload
	TUSTEP Format
	Custom XML
	Wiki Markup
	Wiki Interface Features.

	NLP Integration
	Index Generation
	Automatic Summarization
	Other NLP Services

	Semantic Extensions
	Ontology Model
	Automatic Ontology Population
	Ontology Queries
	Application Integration

	Summary and Conclusions
	References

