
Predicate-Argument EXtractor (PAX)

Ralf Krestel,1 René Witte,2 and Sabine Bergler2

1L3S Research Center
Leibniz Universität Hannover, Germany

2Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada

Abstract
In this paper, we describe the open source GATE component PAX for extracting predicate-argument structures (PASs). PASs are used
in various contexts to represent relations within a sentence structure. Different “semantic” parsers extract relational information from
sentences but there exists no common format to store this information. Our predicate-argument extractor component (PAX) takes the
annotations generated by selected parsers and transforms the parsers’ results to predicate-argument structures represented as triples
(subject-verb-object). This allows downstream components in an analysis pipeline to process PAS triples independent of the deployed
parser, as well as combine the results from several parsers within a single pipeline.

1. Introduction
Recent NLP applications have increasingly tackled semantic
notions, such as textual entailment determination, incremen-
tal summary generation, or event extraction in BioNLP. The
basic first issue in all these tasks is the scoping of predica-
tive constructs as it is expressed in a predicate-argument
structure (PAS). PASs can be extracted from the output of
parsers; in particular dependency parsers output the compo-
nent semantic relations of subject and object directly and
assembling PAS structure amounts mainly to combining the
related semantic relations for each verb.
Great progress has been achieved over the past 10 years with
the increasing availability of different systems that tackle
the same, matured tasks (POS tagging, parsing, IR) and
with integration platforms that facilitate mixing and match-
ing different application modules in a pipeline of greater
and greater sophistication, reducing development time and
increasing reuse of tested systems. One influential integra-
tion platform is GATE (Cunningham et al., 2002), which
provides components for most steps in common NLP tasks,
including several parsers. To manage these parsers’ output
within a pipeline in need of PAS annotations, a “normalized”
output format is needed.
We present here a system that has been conceived as a GATE
component that extracts PA structures from the output of
several different parsers. It shields downstream components
from the different output formats of the different parsers
by providing a common result structure, thereby facilitat-
ing experiments that mix and match different parsers in an
analysis pipeline. Our PAX component is available under an
open source license.1

2. Predicate-Argument Structures (PASs)
Most verbs in English require a subject and an object to be
specified in a grammatical sentence. For simple sentences,
this subject-verb-object structure constitutes a complete anal-
ysis; for more complex sentences the task is to identify the
PA structure, to assign the correct arguments to all verbs,

1PAX, see http://www.semanticsoftware.info/pax

and to identify adjuncts, i.e., PPs or NPs that are not in
argument position (Merlo and Ferrer, 2006).
Dependency parsers have been addressing this as the major
issue for some time and some prioritize correct dependen-
cies over achieving a complete parse for a sentence. Even
full-fledged constituent parsers have lately offered a conver-
sion module that transforms a parse tree into dependency
notation, because these notations have been most useful for
different applications. Dependency relations are like sev-
ered components of predicate-argument structure or adjunct
specifications, but they do not make the complete event
structure explicit and it is surprisingly complex to extract
the underlying PAS from dependency parser output.
As an example, consider the sentence:

President Barack Obama will not meet the Dalai
Lama during his five-day trip to the U.S. capital.

The outputs of SUPPLE, MiniPar, RASP, Stanford Parser,
and the MuNPEx noun phrase chunker can be seen in Ta-
ble 1.

SUPPLE
qlf=[meet(e26), adv(e26, not), time(e26, present), aspect(e26, sim-
ple), voice(e26, active), lobj(e26, e27), ne tag(e27, offsets(165,
169)), name(e27, ’Lama’), ne tag(e28, offsets(159, 164)), name(e28,
’Dalai’), realisation(e28, offsets(159, 164)), qual(e27, e28), det(e27,
the), realisation(e27, offsets(155, 169)), realisation(e26, offsets(146,
169)), realisation(e26, offsets(146, 169))]

MiniPar
nn c id=43, c word=U.S., h id=44, h word=capital
obj c id=34, c word=Lama, h id=31, h word=meet
s c id=1026, c word=President, h id=1031, h word=meet

RASP
ncsubj meet:6 VV0 Obama:3 NP1
iobj meet:6 VV0 during:10 II
dobj meet:6 VV0 Lama:9 NP1

Stanford Parser
args=[57, 63], kind=dobj, args=[57, 73], kind=prep
args=[63, 59], kind=det, args=[63, 61], kind=nn

MuNPEx Noun Phrase Chunker
DET=his, HEAD=trip, HEAD END=194, HEAD START=190,
MOD=five-day

Table 1: Excerpts from the output of the different parsers
for the example sentence

Our PAX component normalises the different outputs into

http://www.semanticsoftware.info/pax


PAS as shown in Table 2.

RASP PAS Obama – meet – trip
SUPPLE PAS – meet – Lama
MiniPar PAS Obama – meet – Lama
Stanford PAS Obama – meet – Lama

Noun Phrase PAS trip – be – five-day
Dalai – be – Lama

Table 2: Output of three different parsers with extracted
predicated-argument structures for the example sentence

As can be seen, the parsers have quite different opinions
about the input sentence. This is not an exceptional, or
special case, but typical for this task. Notice that we chose a
rather simple sentence to demonstrate the different outputs.
For more complex sentence structures, the difference in
output is even greater and the extracted predicate-argument
structures look quite different. Figure 1 gives an impression
of the output of the MiniPar parser for a complete newspaper
article.

3. Resource Description
Our PAX component is intended to be used as part of a larger
processing pipeline, running after the individual parsers but
before higher-level components that make use of PASs. It
first collects the output of various parsers from the anno-
tations added by them to a document. It then computes
predicate-argument structures for each sentence as explained
in Section 4. The predicate-argument structures for each
sentence as extracted by PAX are then added as new an-
notations for this sentence and can be processed by other
components in subsequent steps.

Supported Parsers. A variety of different parsers of-
fer support for syntactic analysis of sentences. With this
resource we try to extract predicate-argument structures
using the output of different such parsers. Currently,
we support MiniPar (Lin, 1998), RASP (Briscoe et al.,
2006), SUPPLE (Gaizauskas et al., 2005), and the Stan-
ford Parser (Klein and Manning, 2003a). In addition, we
can extract PASs out of noun phrases, by making use of the
output of a noun phrase chunker like MuNPEx.2

4. Design
We now describe in more detail how to extract predicate-
argument structures from the output of different parsers as
shown in Table 1.
Our PAS extractor is based on a set of rules for each of the
three parsers. These rules determine which part of the parser
output is considered the subject, verb, and object. Because
of the different nomenclature and relations scheme of the
parsers, this has to be done individually for each parser.

4.1. SUPPLE
For SUPPLE (Gaizauskas et al., 2005), the extraction pro-
cess is quite straightforward. The parser outputs semantic
relations, which comprise a logical subject and verb, and
sometimes also a logical object. The PAS extractor there-
fore only has to filter out these elements from the output of

2Multi-lingual Noun Phrase Extractor (MuNPEx), http://www.
semanticsoftware.info/munpex

SUPPLE. The coverage of SUPPLE is lower in comparison
with other parsers. This is due to the philosophy of the
parser (Gaizauskas et al., 2005): “Rather than producing
all possible analyses or using probabilities to generate the
most likely analysis, the preference is not to offer a single
analysis that spans the input sentence unless it can be relied
on to be correct. This means that in many cases only partial
analyses are produced, but the philosophy is that it is more
useful to produce partial analyses that are correct than full
analyses which may well be wrong or highly disjunctive.”

4.2. MiniPar

To obtain predicate-argument structures that represent the
underlying sentence as closely as possible, we often have
to choose between multiple candidates for the object. We
employ a decision tree to select the grammatical structure to
fill the object slot from the parser’s output. If it exists and
relates to the subject-verb pair we choose in this order: “obj,”
“obj1,” “pred,” and “pcomp-n.”
Sometimes the object does not have a direct relation to the
verb but an indirect link through another element in common
like a “mod” construct. In this case we have to track down
and identify this relation to find a representative object. A
complex sentence can contain more than one subject and our
extractor has to be able to handle them reasonably. Besides
dealing with more than one “s” (subject) in one sentence,
it can also handle conjunctions. Table 3 gives a general
overview of the different conjunction types and how the
extractor deals with them.

Sentence X and Y buy a car.

Target PAS X – buy – car
Y – buy – car

Sentence X buys a car and sells his house.

Target PAS X – buy – car
X – sell – house

Sentence X buys a car and a house.

Target PAS X – buy – car
X – buy – house

Table 3: PAS extractor strategy for conjunctions

4.3. RASP

For RASP’s version 3 (Briscoe et al., 2006) we developed a
wrapper to be able to use it from within GATE. It calls the
appropriate script and delivers the parser’s output for further
processing.
The strategy to find subject, verb, and object relations is to
look for “ncsubj” occurrences in the parser output. They
describe a subject together with the corresponding verb. To
find a suitable object we often have to choose between dif-
ferent elements like “dobj,” “iobj,” “obj,” or “xcomp.” To
obtain predicate-argument structures that accurately repre-
sent the underlying sentence, we use the following decision
tree on what grammatical structure to use as object. If it
exists and is related to the verb of the subject, we choose in
this order: “obj,” “dobj” if dependent of an “iobj,” which
itself relates to the relevant verb, “iobj,” “dobj,” and last
“xcomp.”
Besides dealing with more than one “ncsubj” in one sen-
tence, we can also handle conjunctions. This has already

http://www.semanticsoftware.info/munpex
http://www.semanticsoftware.info/munpex


Figure 1: GATE screenshot of MiniPar results

been demonstrated for MiniPar in Table 3 and applies to
RASP as well.

4.4. Stanford Parser
The Stanford Parser (Klein and Manning, 2003a), (Klein
and Manning, 2003b) extracts dependency relations. We
take all “nsubj” and “nsubjpass” elements for subjects and
the associated predicates as verbs. For the object we take in
this order: “dobj,” “prepPobj,” and “dep.”
Conjunctions are already considered by the parser and there
is no further processing needed from our side.

4.5. MuNPEx Noun Phrases
Each noun phrase that contains a modifier is a candidate
for a predicate-argument structure. For example, the noun
phrase “the rich king” contains the same information as the
PAS “king – be – rich”. Adding the noun phrase predica-
tions generates additional PASs that can be especially useful
for certain task like comparing documents’ content based
on predicate-argument structures or for recognizing textual
entailment (e.g., the RTE3 tasks) between statements.

5. Implementation
Our resource is implemented as a component for the General
Architecture for Text Engineering (GATE) (Cunningham et
al., 2002). Figure 2 shows example output of the PAX com-
ponent with the detected PASs for all supported parsers. For
each parser x, a new annotation set of type xParserPaX is
added to the document. If the component detects a predicate-
argument structure in the output of the selected parser, the
sentence containing the PAS is annotated and “sub”, “obj”,

3RTE, see http://www.nist.gov/tac/2009/RTE/

and “verb” properties are added to the annotation. In addi-
tion, we try to detect simple negations within the sentences
like “not” or “never” (Figure 2).

6. Evaluation
To evaluate our PAX component, we selected an article
from the Wall Street Journal and annotated it manually with
predicate-argument structures. The structure of the sen-
tences was particularly complex with most of the time three
or more PASs per sentence. For simple sentences of the
shape “subject, verb, object” all parsers perform well and
we can extract the predicate-argument structures reliably
from the parsers’ output. Therefore we are interested in the
most difficult cases only. We excluded the noun phrase PAS
extraction from this evaluation since it is a special case also
yielding different types of errors. Table 4 gives an overview
of the performance of the different parsers with correctly
extracted PAS, wrong PAS, and partially correct PAS, where
partially means for example that the object was not found or
an indirect object instead of a direct one was found.
Some errors like unresolved pronouns, e.g. “that,” “he,”
“who” or “myself” were not considered errors of the PAS
extraction but need to be dealt with in the future, although for
some parsers we are already able to resolve these constructs.
Another possible source of errors are verb phrases like “de-
clare unconstitutional,” or “prevent s.o. from doing s.th.” If
we insist on having only one term as a predicate we need to
decide which verb reflects the intended meaning of the PAS
best.
Noun Phrases with modifiers can not always be converted
to predicate-argument structures. For example, it works fine
with “the elected President”→ “President – be – elected”;
but not for “last year’s President” 6→ “President – be – year”.

http://www.nist.gov/tac/2009/RTE/


Figure 2: PAX results in GATE showing subject-verb-object triples extracted from MiniPar, RASP, Stanford, and MuNPEx

Sent No of SUPPLE MiniPar RASP Stanford
PAS C P F C P F C P F C P F

1 4 - 2 - - 2 - 1 2 1 1 2 1
2 4 1 - - - 2 - 2 2 - 2 2 -
3 3 - - - - 2 - 2 1 - 1 1 -
4 3 - - - - - 1 2 - - - - -
5 4 - 1 - - 2 - - 2 1 - 2 -
6 1 - 1 - - 1 - - 1 1 - 1 -
7 4 1 - - - 2 - - 3 - - 4 -
8 5 2 1 - 3 1 - - 4 1 3 1 -
9 3 - - - - 1 2 1 2 1 1 1 -

10 3 - 1 - - 1 - - - - - 1 1
11 6 1 2 - 3 1 - 2 4 - 1 1 2
12 3 1 - - - 2 - - 3 1 - - -
13 5 1 1 - 2 1 - 1 2 - 1 1 -
14 2 - - - - 1 - - 2 - - 1 -
15 3 - 1 - - 1 - - 2 - - 2 -
16 2 - 1 - - - - - 1 2 - 1 1
17 4 1 1 - - 3 - - 4 - 1 1 1
18 3 - - - - 2 - - 3 - - 3 -
19 3 1 - - - 1 - 2 - - 1 1 -
20 3 - 1 - - 2 - 1 - 2 1 2 -
21 2 - 1 - - 2 - - 2 - - 2 -
22 1 - 1 - - 1 - - 1 - - 1 -
23 4 - - - 2 - 1 2 1 1 - 1 1
24 0 - - - - - - - - - - - 1P

75 9 15 - 8 31 3 16 42 11 13 32 8
Recall 0.32 0.52 0.77 0.60

Precision 1.0 0.93 0.84 0.85

Table 4: Results for the four parsers: C=correct, P=partially
correct, F=false

7. Conclusion & Future Work
We described a strategy to extract predicate-argument struc-
tures from the output of different parsers and its implementa-
tion in the PAX component for GATE. PASs can be used to
represent content and make it comparable. Finding similar
content (e.g., for text summarization, paraphrase detection)
or entailment (RTE, inferences) are some of the application
areas of predicate-argument structures. Our component cre-
ates a common result structure for the different parsers and
thereby allows downstream analysis components to work

independently of a concrete parser’s output. This simpli-
fies the setup significantly of experiments where the impact
of different parsers on the overall application performance
needs to be measured.
In the future we want to introduce a voting algorithm to iden-
tify the best predicate-argument structures for each sentence
based on the output of multiple parsers.

8. References
E. Briscoe, J. Carroll, and R. Watson. 2006. The Second Release

of the RASP System. In Proceedings of the COLING/ACL 2006
Interactive Presentation Sessions.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. 2002.
GATE: A framework and graphical development environment
for robust NLP tools and applications. In Proc. of the 40th
Anniversary Meeting of the ACL.

R. Gaizauskas, M. Hepple, H. Saggion, M. A. Greenwood, and
K. Humphreys. 2005. SUPPLE: A practical parser for natu-
ral language engineering applications. In Proc. of the 9th Intl.
Workshop on Parsing Technologies (IWPT2005), Vancouver.

Dan Klein and Christopher D. Manning. 2003a. Accurate unlex-
icalized parsing. In ACL ’03: Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics, pages
423–430, Morristown, NJ, USA. Association for Computational
Linguistics.

Dan Klein and Christopher D. Manning. 2003b. Fast exact infer-
ence with a factored model for natural language parsing. In
Advances in Neural Information Processing Systems, volume 15.
MIT Press.

Dekang Lin. 1998. Dependency Based Evaluation of MINIPAR.
In Proceedings of the Workshop on the Evaluation of Parsing
Systems, First International Conference on Language Resources
and Evaluation.

Paola Merlo and Eva Esteve Ferrer. 2006. The notion of argument
in prepositional phrase attachment. Computational Linguistics,
32(3):341–378.


	Introduction
	Predicate-Argument Structures (PASs)
	Resource Description
	Design
	SUPPLE
	MiniPar
	RASP
	Stanford Parser
	MuNPEx Noun Phrases

	Implementation
	Evaluation
	Conclusion & Future Work
	References

